MATH 5321

Exam I

February 16, 1998

Notation.

$$UHP = \{ z : \text{Im } z > 0 \} \qquad \qquad \mathcal{A}(G) = \{ f : f \text{ is analytic on } G \}$$

1. Let *f* be a rational function and let P_f denote the pole set of *f*. Prove that if $\deg(f) \leq -2$ and $P_f \cap \mathbb{R} = \emptyset$, then $\int_{-\infty}^{\infty} f = 2\pi i \sum_{a_k \in P_f \cap UHP} \operatorname{Res}(f, a_k)$.

2. Let γ be a rectifiable curve and ϕ a continuous function on { γ } (into \mathbb{C}). Define $F(z) = \int_{\gamma} \frac{\phi(w)}{(w-z)^2} dw$. Prove that *F* is continous on $\mathbb{C} \setminus {\gamma}$ (into \mathbb{C}).

3. Let *G* be a simply connected region and let $f \in \mathcal{A}(G)$ such that *f* is nonvanishing on *G*. Prove that there exists a branch of square root of *f* on *G*, i.e., prove there exists $g \in \mathcal{A}(G)$ such that $g^2 = f$ on *G*.

4. Let $f \in \mathcal{A}(\mathbb{C})$. Prove that if f is not a polynomial, then g = f(1/z) has an essential singularity at z = 0.

5. Let $S_f = \{ \int_{|z| = \frac{1}{4}} z^n f(z) dz \mid n \in Z \}$. Determine for each of the following

functions:

(i) Whether S_f is bounded?

(ii) Whether S_f has any accumulation points?;

(iii) If the answer to ii is affirmative, then identify the accumulation points of S_{f}

(a)
$$f(z) = \frac{z}{1+z^2}$$
 (b) $f(z) = \sin(\pi z)$ (c) $f(z) = \frac{1}{1-2z}$