Review Part III
Complex Analysis

Underlined Definitions: May be asked for on exam
Underlined Propositions or Theorems: Proofs may be asked for on exam

Chapter 4.1

Riemann-Stieltjes Integrals
Definition of function of bounded variation and total variation
Proposition (1.3) If $\gamma:[a, b] \rightarrow \mathbb{C}$ is piecewise smooth, then γ is of bounded variation and
$V(\gamma)=\int_{a}^{b}\left|\gamma^{\prime}(t)\right| d t$.
Definition of Riemann-Stieltjes Integral
Theorem (1.4) If $f:[a, b] \rightarrow \mathbb{C}$ is continuous and if $\gamma:[a, b] \rightarrow \mathbb{C}$ is of bounded variation, then the
Riemann-Stieltjes integral $\int_{a}^{b} f d \gamma=\int_{a}^{b} f(t) d \gamma(t)$ exists.
(Proof uses Cantor's Theorem II.3.7).
Proposition 1.7 Let $f, g:[a, b] \rightarrow \mathbb{C}$ be continuous, let $\gamma, \sigma:[a, b] \rightarrow \mathbb{C}$ be of bounded variation and let $\alpha, \beta \in \mathbb{C}$. Then,

$$
\begin{aligned}
& \text { a) } \int_{a}^{b}(\alpha f+\beta g) d \gamma=\alpha \int_{a}^{b} f d \gamma+\beta \int_{a}^{b} g d \gamma \\
& \text { b) } \int_{a}^{b} f d(a \gamma+\beta \sigma)=\alpha \int_{a}^{b} f d \gamma+\beta \int_{a}^{b} g d \sigma
\end{aligned}
$$

Proposition Let $f:[a, b] \rightarrow \mathbb{C}$ be continuous and let $\gamma:[a, b] \rightarrow \mathbb{C}$ be of bounded variation. If $a<t_{0}<t_{1}<\cdots<t_{n}=b$, then $\int_{a}^{b} f d \gamma=\sum_{k=1}^{n} \int_{t_{k-1}}^{t_{k}} f d \gamma$
Theorem (1.9) If $\gamma:[a, b] \rightarrow \mathbb{C}$ is piecewise smooth and $f:[a, b] \rightarrow \mathbb{C}$, then $\int_{a}^{b} f d \gamma=\int_{a}^{b} f(t) \gamma^{\prime}(t) d t$.
Definition for a path $\gamma:[a, b] \rightarrow \mathbb{C}$ of trace of $\gamma,\{\gamma\}$.
Definition of rectifiable path $\gamma:[a, b] \rightarrow \mathbb{C}$ and length of $\{\gamma\}=\int_{a}^{b} d \gamma$. For γ piece-wise smooth, length of $\{\gamma\}=\int_{a}^{b}\left|\gamma^{\prime}(t)\right| d t$.

Definition of line integral: Let $\gamma:[a, b] \rightarrow \mathbb{C}$ be rectifiable path and let $f:\{\gamma\} \rightarrow \mathbb{C}$ be continuous, define line integral $\int_{\gamma} f=\int_{a}^{b}(f \circ \gamma) d \gamma=\int_{a}^{b} f(\gamma(t)) d \gamma(t)=\int_{\gamma} f(z) d z$
Note: if γ piece-wise smooth, then $\int_{\gamma} f=\int_{a}^{b}(f \circ \gamma) d \gamma=\int_{a}^{b} f(\gamma(t)) d \gamma(t)=\int_{a}^{b} f(\gamma(t)) \gamma^{\prime}(t) d t=\int_{\gamma} f(z) d z$ Problems about computing line integrals using the definition

Definition of a change of parameter φ
Proposition If φ is a change of parameter, i.e., if $\varphi:[c, d] \rightarrow[a, b], \varphi$ is continuous, strictly increasing and φ is onto, then for $\gamma:[a, b] \rightarrow \mathbb{C}$ a rectifiable path and $f:\{\gamma\} \rightarrow \mathbb{C}$ continuous, then $\int_{\gamma} f=\int_{\gamma \circ \varphi} f$

Definition: (1) a curve as an equivalance class of rectifiable paths;
(2) the trace of a curve is the trace of a representative;
(3) a curve is smooth if some representative is smooth;
(4) a curve is closed if the initial and terminal points on the trace are the same.

Definition for $\gamma:[a, b] \rightarrow \mathbb{C}$ a rectifiable path of $-\gamma$ and of $|\gamma(t)|$ and definition
$\int_{\gamma} f(z)|d z|=\int_{a}^{b} f(\gamma(t)) d|\gamma|(t)$
Proposition (1.17) Let $\gamma:[a, b] \rightarrow \mathbb{C}$ be a rectifiable path and let $f:\{\gamma\} \rightarrow \mathbb{C}$ be continuous. Then,
a) $\quad \int_{-\gamma} f=-\int_{\gamma} f$
b) $\quad\left|\int_{\gamma} f\right| \leq \int_{\gamma}|f||d z| \leq \max _{z \in\{\gamma\}}|f(z)| V(\gamma)$

Theorem (Fundamental of Theorem of Calculus for Line Integrals) Let G be a region and let γ be a rectifiable path in G with initial and terminal points α and β, resp. If $f: G \rightarrow \mathbb{C}$ is continuous and if f has a primitive on G, say F, then $\int_{\gamma} f=\left.F(z)\right|_{\alpha} ^{\beta}$.

Corollary Let G be a region and let γ be a closed rectifiable path in G. If $f: G \rightarrow \mathbb{C}$ is continuous and if f has a primitive on G, say F, then $\int_{\gamma} f=0$.
Problems about computing line integrals using the Fund. Thm. of Calc. for Line Integrals

Chapter 4.2

Proposition 2.1 (Leibnitz's Rule)

Integrals
a) $\quad \int_{|w|=1}(w-z)^{n} d w=0, n=0,1,2,3, \cdots$
b) $\quad \int_{|w|=1} \frac{d w}{(w-z)^{n}}=0,\left\{\begin{array}{c}n=2,3,4,5, \cdots \\ |z| \neq 1\end{array}\right.$
c) $\quad \int_{|w|=1} \frac{d w}{w-z}=\left\{\begin{array}{c}0,|z|>1 \\ 2 \pi i,|z|<1\end{array}\right.$

Cauchy Integral Formula \#0 Let $f: G \rightarrow \mathbb{C}$ be analytic and suppose that $\overline{B(a, r)} \subset G$. For $z \in B(a, r), f(z)=\frac{1}{2 \pi i} \int_{|w-a|=r} \frac{f(w)}{w-z} d w$

Problems about computing line integrals using the CIF \#0
Lemma (2.7) Let γ be a rectifiable curve. Suppose that F_{n} and F are continuous on $\{\gamma\}$ and that $\left\{F_{n}\right\}$ converges uniformly on $\{\gamma\}$ to F. Then, $\lim _{n \rightarrow \infty} \int_{\gamma} F_{n}=\int_{\gamma} \lim _{n \rightarrow \infty} F_{n}=\int_{\gamma} F$

Theorem 2.8 Let G be a region and let $f: G \rightarrow \mathbb{C}$ be analytic. Let $B(a, R) \subset G$. Then, f has a power series representation on $B(a, R)$, say

$$
\begin{equation*}
f(z)=\sum_{n=0}^{\infty} a_{n}(z-a)^{n} \tag{1}
\end{equation*}
$$

where the coefficients $a_{n}=\frac{f^{(n)}(a)}{n!}=\frac{1}{2 \pi i} \int_{|w-a|=\rho} \frac{f(w)}{(w-a)^{n+1}} d w$, for any choice $0<\rho<R$. Furthermore, the radius of convergence of the power series (1) is at least R.

Corollaries (Hypothesis: Let G be a region and let $f: G \rightarrow \mathbb{C}$ be analytic. Let $B(a, R) \subset G$.)
a) the radius of convergence of the power series (1) is equal to $\operatorname{dist}(a, \partial G)$, i.e., the distance (from a) to the nearest singularity of f
b) $\quad f^{(n)}(a)=\frac{n!}{2 \pi i} \int_{|w-a|=\rho} \frac{f(w)}{(w-a)^{n+1}} d w$
c) Cauchy's Estimate If $|f(z)| \leq M$ on $B(a, R)$, then $\left|f^{(n)}(a)\right| \leq \frac{n!M}{R^{n}}$.
d) $\quad f$ has a primitive on $B(a, R)$, namely $F(z)=\sum_{n=0}^{\infty} \frac{a_{n}}{n+1}(z-a)^{n+1}$
e) Proposition 2.15 Suppose γ is a closed rectifiable curve in $B(a, R)$. Then, $\int_{\gamma} f=0$

Chapter 4.3

Division Algorthim

Definition: Let G be a region and let $f: G \rightarrow \mathbb{C}$ be analytic and let $f(a)=0$. We say that f has a zero of order m (multiplicity m) at $z=a$ if
a) there exists $g \in A(G)$ such that (i) $f(z)=(z-a)^{m} g(z)$ and (ii) $g(a) \neq 0$ or alternatively
b) (i) $f(a)=f^{\prime}(a)=f^{\prime \prime}(a)=\cdots=f^{(m-1)}(a)=0$ and $f^{(m)}(a) \neq 0$

Definition: entire function
Liouville's Theorem If f is a bounded entire function, then f is constant.
Fundamental Theorem of Algebra Every non-constant polynomial with complex coefficients has a root in \mathbb{C}

Corollary: Every polynomial with complex coefficients of degree n has exactly n roots (counted according to multiplicity)

Identity Theorem: Let G be a region. Let f be analytic on G. TFAE
a) $\quad f \equiv 0$
b) there exists a point $a \in G$ such that $f^{(n)}(a)=0, n=0,1,2,3, \cdots$
c) $\quad Z_{f}=\{z \in G: f(z)=0\}$ has a limit point in G.

Corollaries:
a) Let $g, h \in A(G)$ and $g(z)=h(z)$ for $z \in S \subset G$. If S has a limit point in G, then $g \equiv h$.
b) Let G be a region. Let f be analytic on G. Suppose that f is not identically 0 on G. If $a \in G$ and $f(a)=0$, then there exists an integer m such that f has a zero at $z=a$ of multiplicity m.
c) Isolated Zeros. Let G be a region. Let f be analytic on G. Suppose that f is not identically 0 on G. If $a \in G$ and $f(a)=0$, then there exists an $R>0$ such that on $B(a, R) \backslash\{a\}$ we have $f(z) \neq 0$.
d) Let G be a region. Let f be analytic on G. Suppose that f is not identically 0 on G. Let K be a compact subset of G. Then, f has at most a finite number of zeros on K. Further, f has at most a countable number of zeros on G.

Maximum Modulus Theorem Let G be a region. Let f be analytic on G. If there exists a point $a \in G$ such that $|f(a)| \geq|f(z)|$ for all $z \in G$, then f is constant on G.

Extension Let G be a region. Let f be analytic on G. If there exists a point $a \in G$ and $r>0$ such that $|f(a)| \geq|f(z)|$ for all $z \in B(a, r)$, then f is constant on G.

Chapter 4.4

Proposition: Let γ be a closed rectifiable curve and let $a \notin\{\gamma\}$. Then, $\frac{1}{2 \pi i} \int_{\gamma} \frac{d z}{z-a}$ is an integer.

Definition: Winding number of γ wrt to a (index of γ wrt to a) $n(\gamma, a)=\frac{1}{2 \pi i} \int_{\gamma} \frac{d z}{z-a}$, for γ a closed rectifiable curve and $a \notin\{\gamma\}$.

Interpretation: $2 \pi n(\gamma, a)$ represents the total change in $\arg (\gamma(t)-a)$ as $\gamma(t)$ parametrizes the curve $\{\gamma\}$, i.e., $n(\gamma, a)$ represents the total number of times γ winds around a.

Theorem Let γ be a closed rectifiable curve. Then, $n(\gamma, a)$ is constant on components of $\mathbb{C} \backslash\{\gamma\}$. Also, $n(\gamma, a)=0$ on the unbounded component of $\mathbb{C} \backslash\{\gamma\}$

Cauchy’s Integral Formula (\#0). Let G be a region in \mathbb{C}, let $\overline{B(a, r)} \subset G$ and let γ be the circle $C(a, r)$, oriented positively. Let $f \in A(G)$. Then, for $z \in B(a, r), f(z)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(w)}{w-z} d w$.
Cauchy's Theorem (\#0). Let G be a region in \mathbb{C}, let $B(a, r) \subset G$ and let γ be a closed rectifiable curve in $B(a, r)$. Let $f \in A(G)$. Then, $\int_{\gamma} f=0$.

Chapter 4.5

Definition. $\gamma \approx 0$ for a closed rectifiable curve γ lying in a region G if \ldots
Lemma 5.1. Let γ be a rectifiable curve and let φ be continuous on $\{\gamma\}$. For each $m \geq 1$, let $f_{m}(z)=\int_{\gamma} \frac{\varphi(w)}{(w-z)^{m}} d w$ for $z \in \mathbb{C} \backslash\{\gamma\}$. Then, $f_{m} \in A(\mathbb{C} \backslash\{\gamma\})$ and $f_{m}^{\prime}(z)=m f_{m+1}(z)$.

Cauchy's Integral Formula (\#1). Let G be a region in \mathbb{C} and let $f \in A(G)$. Let γ be a closed rectifiable curve in G such that $\gamma \approx 0$. Then, for $z \in G \backslash\{\gamma\}, n(\gamma ; z) f(z)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(w)}{w-z} d w$.

Cauchy's Integral Formula (\#2). Let G be a region in \mathbb{C} and let $f \in A(G)$. Let $\gamma_{1}, \gamma_{2}, \cdots, \gamma_{m}$ be closed rectifiable curves in G such that $\gamma_{1}+\gamma_{2}+\cdots+\gamma_{m} \approx 0$. Then, for $z \in G \backslash \bigcup_{k=1}^{n}\left\{\gamma_{k}\right\}$, $\sum_{k=1}^{m} n\left(\gamma_{k} ; z\right) f(z)=\sum_{k=1}^{m} \frac{1}{2 \pi i} \int_{\gamma_{k}} \frac{f(w)}{w-z} d w$.

Cauchy's Theorem (\#1). Let G be a region in \mathbb{C} and let $f \in A(G)$. Let γ be a closed rectifiable curve in G such that $\gamma \approx 0$. Then, $\int_{\gamma} f=0$

Cauchy's Theorem (\#2). Let G be a region in \mathbb{C} and let $f \in A(G)$. Let $\gamma_{1}, \gamma_{2}, \cdots, \gamma_{m}$ be a closed rectifiable curves in G such that $\gamma_{1}+\gamma_{2}+\cdots+\gamma_{m} \approx 0$. Then, $\sum_{k=1}^{m} \int_{\gamma_{k}} f=0$

Corollary. Let G be a region in \mathbb{C} and let $f \in A(G)$. Let γ be a closed rectifiable curve in G such that $\gamma \approx 0$. Then, for $z \in G \backslash\{\gamma\}, n(\gamma ; z) f^{(k)}(z)=\frac{k!}{2 \pi i} \int_{\gamma} \frac{f(w)}{(w-z)^{k+1}} d w$.
Morera's Theorem Let G be a region in \mathbb{C} and let $f \in C(G)$. Suppose that $\int_{T} f=0$ for every triangular path $T \subset G$. Then, $f \in A(G)$.

