Review Part III

Complex Analysis

Underlined Definitions: May be asked for on exam

Underlined Propositions or Theorems: Proofs may be asked for on exam

Chapter 4.1

Riemann-Stieltjes Integrals

Definition of function of bounded variation and total variation

Proposition (1.3) If $\gamma:[a,b]\to\mathbb{C}$ is piecewise smooth, then γ is of bounded variation and

$$V(\gamma) = \int_{a}^{b} |\gamma'(t)| dt.$$

Definition of Riemann-Stieltjes Integral

Theorem (1.4) If $f:[a,b] \to \mathbb{C}$ is continuous and if $\gamma:[a,b] \to \mathbb{C}$ is of bounded variation, then the

Riemann-Stieltjes integral $\int_{0}^{\infty} f \, d\gamma = \int_{0}^{\infty} f(t) \, d\gamma(t)$ exists.

(Proof uses Cantor's Theorem II.3.7).

<u>Proposition 1.7</u> Let $f, g:[a,b] \to \mathbb{C}$ be continuous, let $\gamma, \sigma:[a,b] \to \mathbb{C}$ be of bounded variation and let $\alpha, \beta \in \mathbb{C}$. Then,

a)
$$\int_{a}^{b} (\alpha f + \beta g) d\gamma = \alpha \int_{a}^{b} f d\gamma + \beta \int_{a}^{b} g d\gamma$$
b)
$$\int_{a}^{b} f d(a\gamma + \beta \sigma) = \alpha \int_{a}^{b} f d\gamma + \beta \int_{a}^{b} g d\sigma$$

b)
$$\int_{a}^{b} f d(a\gamma + \beta\sigma) = \alpha \int_{a}^{b} f d\gamma + \beta \int_{a}^{b} g d\sigma$$

Proposition Let $f:[a,b] \to \mathbb{C}$ be continuous and let $\gamma:[a,b] \to \mathbb{C}$ be of bounded variation. If

$$a < t_0 < t_1 < \dots < t_n = b$$
, then
$$\int_a^b f d\gamma = \sum_{k=1}^n \int_{t_{k-1}}^{t_k} f d\gamma$$

Theorem (1.9) If $\gamma:[a,b]\to\mathbb{C}$ is piecewise smooth and $f:[a,b]\to\mathbb{C}$, then $\int_{-\infty}^{\infty} f\ d\gamma=\int_{-\infty}^{\infty} f(t)\gamma'(t)dt$.

Definition for a path $\gamma:[a,b] \to \mathbb{C}$ of trace of γ , $\{\gamma\}$.

Definition of rectifiable path $\gamma:[a,b]\to\mathbb{C}$ and length of $\{\gamma\}=\int^bd\gamma$. For γ piece-wise smooth, length

of
$$\{\gamma\} = \int_a^b |\gamma'(t)| dt$$
.

Definition of line integral: Let $\gamma:[a,b]\to\mathbb{C}$ be rectifiable path and let $f:\{\gamma\}\to\mathbb{C}$ be continuous,

define line integral
$$\int_{\gamma} f = \int_{a}^{b} (f \circ \gamma) d\gamma = \int_{a}^{b} f(\gamma(t)) d\gamma(t) = \int_{\gamma} f(z) dz$$

Note: if
$$\gamma$$
 piece-wise smooth, then
$$\int_{\gamma} f = \int_{a}^{b} (f \circ \gamma) d\gamma = \int_{a}^{b} f(\gamma(t)) d\gamma(t) = \int_{a}^{b} f(\gamma(t)) \gamma'(t) dt = \int_{\gamma} f(z) dz$$

Problems about computing line integrals using the definition

Definition of a change of parameter φ

Proposition If φ is a change of parameter, i.e., if $\varphi:[c,d]\to[a,b]$, φ is continuous, strictly increasing and φ is onto, then for $\gamma:[a,b]\to\mathbb{C}$ a rectifiable path and $f:\{\gamma\}\to\mathbb{C}$ continuous, then $\int\limits_{\gamma} f=\int\limits_{\gamma\circ\varphi} f$

Definition: (1) a curve as an equivalence class of rectifiable paths;

- (2) the trace of a curve is the trace of a representative;
- (3) a curve is smooth if some representative is smooth;
- (4) a curve is closed if the initial and terminal points on the trace are the same.

Definition for $\gamma:[a,b]\to\mathbb{C}$ a rectifiable path of $-\gamma$ and of $|\gamma(t)|$ and definition

$$\int_{\gamma} f(z) |dz| = \int_{a}^{b} f(\gamma(t)) d|\gamma|(t)$$

<u>Proposition (1.17)</u> Let $\gamma:[a,b] \to \mathbb{C}$ be a rectifiable path and let $f:\{\gamma\} \to \mathbb{C}$ be continuous. Then,

a)
$$\int_{-\gamma} f = -\int_{\gamma} f$$

b)
$$|\int_{\gamma} f| \leq \int_{\gamma} |f| |dz| \leq \max_{z \in \{\gamma\}} |f(z)| V(\gamma)$$

Theorem (Fundamental of Theorem of Calculus for Line Integrals) Let G be a region and let γ be a rectifiable path in G with initial and terminal points α and β , resp. If $f:G\to\mathbb{C}$ is continuous and if f has a primitive on G, say F, then $\int_{\gamma} f = F(z)\Big|_{\alpha}^{\beta}$.

Corollary Let G be a region and let γ be a closed rectifiable path in G. If $f:G\to\mathbb{C}$ is continuous and if f has a primitive on G, say F, then $\int f=0$.

Problems about computing line integrals using the Fund. Thm. of Calc. for Line Integrals

Chapter 4.2

Proposition 2.1 (Leibnitz's Rule)

Integrals

a)
$$\int_{|w|=1} (w-z)^n dw = 0, \quad n = 0, 1, 2, 3, \dots$$

b)
$$\int_{|w|=1} \frac{dw}{(w-z)^n} = 0, \begin{cases} n = 2, 3, 4, 5, \dots \\ |z| \neq 1 \end{cases}$$

c)
$$\int_{|w|=1} \frac{dw}{w-z} = \begin{cases} 0, & |z| > 1 \\ 2\pi i, & |z| < 1 \end{cases}$$

<u>Cauchy Integral Formula #0</u> Let $f:G\to\mathbb{C}$ be analytic and suppose that $\overline{B(a,r)}\subset G$. For $z\in B(a,r)$, $f(z)=\frac{1}{2\pi i}\int\limits_{|w-g|=r}\frac{f(w)}{w-z}dw$

Problems about computing line integrals using the CIF #0

<u>Lemma (2.7)</u> Let γ be a rectifiable curve. Suppose that F_n and F are continuous on $\{\gamma\}$ and that $\{F_n\}$ converges uniformly on $\{\gamma\}$ to F. Then, $\lim_{n\to\infty}\int_{\gamma}F_n=\int_{\gamma}\lim_{n\to\infty}F_n=\int_{\gamma}F$

Theorem 2.8 Let G be a region and let $f: G \to \mathbb{C}$ be analytic. Let $B(a,R) \subset G$. Then, f has a power series representation on B(a,R), say

$$f(z) = \sum_{n=0}^{\infty} a_n (z - a)^n$$
 (1)

where the coefficients $a_n = \frac{f^{(n)}(a)}{n!} = \frac{1}{2\pi i} \int_{|w-a|=\rho} \frac{f(w)}{(w-a)^{n+1}} dw$, for any choice $0 < \rho < R$. Furthermore, the radius of convergence of the power series (1) is at least R.

Corollaries (Hypothesis: Let G be a region and let $f:G\to\mathbb{C}$ be analytic. Let $B(a,R)\subset G$.)

a) the radius of convergence of the power series (1) is equal to $\operatorname{dist}(a, \partial G)$, i.e., the distance (from a) to the nearest singularity of f

b)
$$f^{(n)}(a) = \frac{n!}{2\pi i} \int_{|w-a|=\rho} \frac{f(w)}{(w-a)^{n+1}} dw$$

- c) <u>Cauchy's Estimate</u> If $|f(z)| \le M$ on B(a,R), then $|f^{(n)}(a)| \le \frac{n!M}{R^n}$.
- d) f has a primitive on B(a,R), namely $F(z) = \sum_{n=0}^{\infty} \frac{a_n}{n+1} (z-a)^{n+1}$
- e) Proposition 2.15 Suppose γ is a closed rectifiable curve in B(a,R). Then, $\int_{\gamma} f = 0$

Chapter 4.3

Division Algorthim

Definition: Let G be a region and let $f: G \to \mathbb{C}$ be analytic and let f(a) = 0. We say that f has a zero of order m (multiplicity m) at z = a if

a) there exists $g \in A(G)$ such that (i) $f(z) = (z - a)^m g(z)$ and (ii) $g(a) \neq 0$

or alternatively

b) (i)
$$f(a) = f'(a) = f''(a) = \cdots = f^{(m-1)}(a) = 0$$
 and $f^{(m)}(a) \neq 0$

Definition: entire function

Liouville's Theorem If f is a bounded entire function, then f is constant.

Fundamental Theorem of Algebra Every non-constant polynomial with complex coefficients has a root in $\mathbb C$

Corollary: Every polynomial with complex coefficients of degree n has exactly n roots (counted according to multiplicity)

<u>Identity Theorem</u>: Let G be a region. Let f be analytic on G. TFAE

- a) $f \equiv 0$
- b) there exists a point $a \in G$ such that $f^{(n)}(a) = 0, n = 0, 1, 2, 3, \cdots$
- c) $Z_f = \{z \in G : f(z) = 0\}$ has a limit point in G.

Corollaries:

- a) Let $g,h \in A(G)$ and g(z) = h(z) for $z \in S \subset G$. If S has a limit point in G, then $g \equiv h$.
- b) Let G be a region. Let f be analytic on G. Suppose that f is not identically 0 on G. If $a \in G$ and f(a) = 0, then there exists an integer m such that f has a zero at z = a of multiplicity m.
- Isolated Zeros. Let G be a region. Let f be analytic on G. Suppose that f is not identically 0 on G. If $a \in G$ and f(a) = 0, then there exists an R > 0 such that on $B(a,R) \setminus \{a\}$ we have $f(z) \neq 0$.
- d) Let G be a region. Let f be analytic on G. Suppose that f is not identically 0 on G. Let K be a compact subset of G. Then, f has at most a finite number of zeros on K. Further, f has at most a countable number of zeros on G.

Maximum Modulus Theorem Let G be a region. Let f be analytic on G. If there exists a point $a \in G$ such that $|f(a)| \ge |f(z)|$ for all $z \in G$, then f is constant on G.

Extension Let G be a region. Let f be analytic on G. If there exists a point $a \in G$ and r > 0 such that $|f(a)| \ge |f(z)|$ for all $z \in B(a,r)$, then f is constant on G.

Chapter 4.4

Proposition: Let γ be a closed rectifiable curve and let $a \notin \{\gamma\}$. Then, $\frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z-a}$ is an integer.

Definition: Winding number of γ wrt to a (index of γ wrt to a) $n(\gamma, a) = \frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z - a}$, for γ a closed rectifiable curve and $a \notin \{\gamma\}$.

Interpretation: $2\pi n(\gamma, a)$ represents the total change in $\arg(\gamma(t) - a)$ as $\gamma(t)$ parametrizes the curve $\{\gamma\}$, i.e., $n(\gamma, a)$ represents the total number of times γ winds around a.

Theorem Let γ be a closed rectifiable curve. Then, $n(\gamma, a)$ is constant on components of $\mathbb{C} \setminus \{\gamma\}$. Also, $n(\gamma, a) = 0$ on the unbounded component of $\mathbb{C} \setminus \{\gamma\}$

Cauchy's Integral Formula (#0). Let G be a region in \mathbb{C} , let $\overline{B(a,r)} \subset G$ and let γ be the circle C(a,r), oriented positively. Let $f \in A(G)$. Then, for $z \in B(a,r)$, $f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{w-z} dw$.

Cauchy's Theorem (#0). Let G be a region in $\mathbb C$, let $B(a,r)\subset G$ and let γ be a closed rectifiable curve in B(a,r). Let $f\in A(G)$. Then, $\int\limits_{\gamma} f=0$.

Chapter 4.5

Definition. $\gamma \approx 0$ for a closed rectifiable curve γ lying in a region G if ...

Lemma 5.1. Let γ be a rectifiable curve and let φ be continuous on $\{\gamma\}$. For each $m \ge 1$, let $f_m(z) = \int_{\gamma} \frac{\varphi(w)}{\left(w-z\right)^m} dw$ for $z \in \mathbb{C} \setminus \{\gamma\}$. Then, $f_m \in A(\mathbb{C} \setminus \{\gamma\})$ and $f_m(z) = m f_{m+1}(z)$.

Cauchy's Integral Formula (#1). Let G be a region in $\mathbb C$ and let $f \in A(G)$. Let γ be a closed rectifiable curve in G such that $\gamma \approx 0$. Then, for $z \in G \setminus \{\gamma\}$, $n(\gamma;z) f(z) = \frac{1}{2\pi i} \int_{\mathbb R} \frac{f(w)}{w-z} \, dw$.

Cauchy's Integral Formula (#2). Let G be a region in $\mathbb C$ and let $f \in A(G)$. Let $\gamma_1, \gamma_2, \cdots, \gamma_m$ be closed rectifiable curves in G such that $\gamma_1 + \gamma_2 + \cdots + \gamma_m \approx 0$. Then, for $z \in G \setminus \bigcup_{k=1}^n \{\gamma_k\}$,

$$\sum_{k=1}^{m} n(\gamma_k; z) f(z) = \sum_{k=1}^{m} \frac{1}{2\pi i} \int_{\gamma_k} \frac{f(w)}{w - z} dw.$$

Cauchy's Theorem (#1). Let G be a region in $\mathbb C$ and let $f \in A(G)$. Let γ be a closed rectifiable curve in G such that $\gamma \approx 0$. Then, $\int_{\mathbb R} f = 0$

Cauchy's Theorem (#2). Let G be a region in $\mathbb C$ and let $f \in A(G)$. Let $\gamma_1, \gamma_2, \dots, \gamma_m$ be a closed rectifiable curves in G such that $\gamma_1 + \gamma_2 + \dots + \gamma_m \approx 0$. Then, $\sum_{k=1}^m \int_{\gamma_k} f = 0$

Corollary. Let G be a region in $\mathbb C$ and let $f \in A(G)$. Let γ be a closed rectifiable curve in G such that $\gamma \approx 0$. Then, for $z \in G \setminus \{\gamma\}$, $n(\gamma; z) f^{(k)}(z) = \frac{k!}{2\pi i} \int_{\gamma} \frac{f(w)}{\left(w-z\right)^{k+1}} \, dw$.

Morera's Theorem Let G be a region in \mathbb{C} and let $f \in C(G)$. Suppose that $\int_T f = 0$ for every triangular path $T \subset G$. Then, $f \in A(G)$.