Exam I In-Class Make-up Due: Monday, 7 October

See instructions for corrections. Answer the problems on separate paper. You do <u>not</u> need to rewrite the problem statements on your answer sheets. Work carefully. Do your own work. **Show all relevant supporting steps!**

Part A. Do any five (5) of the following problems:

- 1. (12) Let z = -4 4i and $w = 2 + 2\sqrt{3}i$. Write in rectangular form, a + bi, and polar form, $r \operatorname{cis} \theta$, each of the following:
 - a. $\frac{w^3}{z^4}$ b. $(z-\overline{w})(w-\overline{z})$
- 2. (12) Prove the following proposition: Let (X, d) be a metric space and let A be a subset of X. Then, $\partial A = \overline{A} \setminus \operatorname{int} A$.
- 3. (12) Prove the following proposition: Let (X, d) be a complete metric space and let $Y \subset X$. If *Y* is closed, then *Y* is complete.

4. (12) Prove the following proposition: Let $z, w \in \mathbb{C}, w \neq 0$. Then, $\frac{z}{w} = \frac{z}{w}$

- 5. (12) Give examples of sequences of subsets $\{F_n\}$ of \mathbb{C} such that
 - a. each F_n is closed and for each $n \ge 1$, $F_n \supset F_{n+1}$, but $\bigcap_{n=1}^{\infty} F_n$ is not a singleton

b. each F_n is closed and $\lim_{n \to \infty} diam(F_n) = 0$ but $\bigcap_{n=1}^{\infty} F_n$ is not a singleton

c. for each $n \ge 1$, $F_n \supset F_{n+1}$ and $\lim_{n \to \infty} diam(F_n) = 0$, but $\bigcap_{n=1}^{\infty} F_n$ is not a singleton

6. (12) Prove the following proposition: Let (X, d) be a metric space. If C is a component of X, then C is closed.

Part B. Do each of the following problems:

7. (15) Provide a counterexample to each of the following assertions:

- a. In a metric space (X, d), for any $A \subset X$ we have diam(int(A)) = diam(A)
- b. In a metric space (X, d), for any $A \subset X$ we have int $\overline{A} \subset \overline{\operatorname{int} A}$
- c. Let (X, d) be a metric space and let $f: X \to \mathbb{R}$ be continuous on X. If A is a closed subset of X, then f(A) is a closed subset of \mathbb{R} .
- d. Let (X, d) be a compact metric space and let $f: X \to \mathbb{R}$ be continuous on X. Then, f is Lipschitz.
- e. Let (X,d) be a metric space and let $f: X \to \mathbb{R}$ be bounded and continuous on *X*. Then, *f* is uniformly continuous.
- 8. (30) Classification Problem. Correctly identify whether the following subsets of C are:
 (a) open; (b) closed; (c) connected; (d) polygonally path connected; (e) compact;
 (f) complete; (g) bounded; (h) region. You do not need to provide a rationale for your classification. Fill out the classification information on the attached page, i.e.,

if the set possesses the property <u>mark the cell</u> in the table with Y (= yes) if the set does not possess the property <u>do not mark</u> the cell in the table

- A. $\{B(0,1) \setminus B(\frac{1}{4},\frac{1}{4})\} \cap \{z : \operatorname{Re} z > 0\}$
- B. $\{B(0,1)\setminus \overline{B(\frac{1}{2},\frac{1}{2})}\}$

C. $T \setminus B(0,1)$ where *T* is the equilateral triangle (interior plus the sides) centered at 0 with vertices $\left\{2, 2\operatorname{cis} \frac{2\pi}{3}, 2\operatorname{cis} \frac{4\pi}{3}\right\}$. Note: the circle C(0,1) is inscribed inside $\pi -\pi$

of T and is tangent to the side of T at the points $\{-1, \operatorname{cis} \frac{\pi}{3}, \operatorname{cis} \frac{-\pi}{3}\}$.

D.
$$\{z = x + iy : xy < 2, xy > 0\} \setminus B(0, 4)$$

E. $\bigcup_{n=1}^{\infty} l_n$, where each $l_n = [0, b_n]$ where $b_n = \operatorname{cis} \frac{\pi}{2n}$

Classification Table for Problem 8

	open	closed	connected	polygonally path connected	compact	complete	bounded	region
А								
В								
С								
D								
Е								