Part A. Do any five (5) of the following problems:

1. (12) Let \(z = -4 - 4i \) and \(w = 2 + 2\sqrt{3}i \). Write in rectangular form, \(a + bi \), and polar form, \(r \text{ cis } \theta \), each of the following:

 a. \(\frac{w^3}{z^4} \)
 b. \((z - w)(w - \overline{z})\)

2. (12) Prove the following proposition: Let \((X, d)\) be a metric space and let \(A \) be a subset of \(X \). Then, \(\partial A = \overline{A} \setminus \text{int } A \).

3. (12) Prove the following proposition: Let \((X, d)\) be a complete metric space and let \(Y \subset X \). If \(Y \) is closed, then \(Y \) is complete.

4. (12) Prove the following proposition: Let \(z, w \in \mathbb{C}, w \neq 0 \). Then, \(\frac{\overline{z}}{w} = \frac{\overline{w}}{z} \)

5. (12) Give examples of sequences of subsets \(\{F_n\} \) of \(\mathbb{C} \) such that

 a. each \(F_n \) is closed and for each \(n \geq 1 \), \(F_n \supset F_{n+1} \), but \(\bigcap_{n=1}^{\infty} F_n \) is not a singleton

 b. each \(F_n \) is closed and \(\lim_{n \to \infty} \text{diam}(F_n) = 0 \) but \(\bigcap_{n=1}^{\infty} F_n \) is not a singleton

 c. for each \(n \geq 1 \), \(F_n \supset F_{n+1} \), and \(\lim_{n \to \infty} \text{diam}(F_n) = 0 \), but \(\bigcap_{n=1}^{\infty} F_n \) is not a singleton

6. (12) Prove the following proposition: Let \((X, d)\) be a metric space. If \(C \) is a component of \(X \), then \(C \) is closed.
Part B. Do each of the following problems:

7. (15) Provide a counterexample to each of the following assertions:

a. In a metric space \((X, d)\), for any \(A \subseteq X\) we have \(diam(int(A)) = diam(A)\)

b. In a metric space \((X, d)\), for any \(A \subseteq X\) we have \(\text{int } \overline{A} \subseteq \text{int } A\)

c. Let \((X, d)\) be a metric space and let \(f : X \rightarrow \mathbb{R}\) be continuous on \(X\). If \(A\) is a closed subset of \(X\), then \(f(A)\) is a closed subset of \(\mathbb{R}\).

d. Let \((X, d)\) be a compact metric space and let \(f : X \rightarrow \mathbb{R}\) be continuous on \(X\). Then, \(f\) is Lipschitz.

e. Let \((X, d)\) be a metric space and let \(f : X \rightarrow \mathbb{R}\) be bounded and continuous on \(X\). Then, \(f\) is uniformly continuous.

8. (30) Classification Problem. Correctly identify whether the following subsets of \(\mathbb{C}\) are: (a) open; (b) closed; (c) connected; (d) polygonally path connected; (e) compact; (f) complete; (g) bounded; (h) region. You do not need to provide a rationale for your classification. Fill out the classification information on the attached page, i.e., if the set possesses the property **mark the cell** in the table with \(Y\) (= yes) if the set does not possess the property **do not mark** the cell in the table

A. \(\{B(0,1) \setminus B(\frac{1}{4}, \frac{1}{2})\} \cap \{z : \Re z > 0\}\)

B. \(\{B(0,1) \setminus B(\frac{1}{2}, \frac{1}{2})\}\)

C. \(T \setminus B(0,1)\) where \(T\) is the equilateral triangle (interior plus the sides) centered at 0 with vertices \(\left\{2, 2\text{cis} \frac{2\pi}{3}, 2\text{cis} \frac{4\pi}{3}\right\}\). Note: the circle \(C(0,1)\) is inscribed inside of \(T\) and is tangent to the side of \(T\) at the points \(\{-1, \text{cis} \frac{\pi}{3}, \text{cis} -\frac{\pi}{3}\}\).

D. \(\{z = x + iy : xy < 2, xy > 0\} \setminus B(0,4)\)

E. \(\bigcup_{n=1}^{\infty} l_n\), where each \(l_n = [0, b_n]\) where \(b_n = \text{cis} \frac{\pi}{2n}\)
<table>
<thead>
<tr>
<th></th>
<th>open</th>
<th>closed</th>
<th>connected</th>
<th>polygonally path connected</th>
<th>compact</th>
<th>complete</th>
<th>bounded</th>
<th>region</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>