Work independently. Answer the problems on separate paper. You do <u>not</u> need to rewrite the problem statements on your answer sheets. Work carefully. <u>Show all relevant supporting</u> <u>steps!</u>

1. (10 pts) Prove that if
$$\operatorname{Re} z > 0$$
 then $\left| \frac{z-2}{z+2} \right| < 1$.

- 2. (10 pts) For each of the following cases, give an example of a metric space (X, d), where $X \subset \mathbb{C}$ and d is the inherited metric such that
 - a. there exists a sequence $\{z_n\} \subset X$ such that no subsequence of $\{z_n\}$ converges.
 - b. there exists a sequence $\{z_n\} \subset X$ such that $\{z_n\}$ is Cauchy, but $\{z_n\}$ does not converge.
 - c. there exists a sequence $\{z_n\} \subset X$ such that there exists two subsequences of $\{z_n\}$, say $\{z_{n_j}\}$ and $\{z_{n_k}\}$, such that $\{z_{n_j}\} \rightarrow z'$ and $\{z_{n_k}\} \rightarrow z''$ and $z' \neq z''$.
 - d. every point of X is a limit point of X.
 - e. *X* has exactly three limit points.
- 3. (10 pts) Sketch each of the following subsets *T* of \mathbb{C} :

a.
$$T = \{w : w = \frac{1}{z}, z \in S\}$$
 where $S = \{z : \operatorname{Re} z > 0, \operatorname{Im} z < 0, |z| < 4\}$

b.
$$T = \{z : | z | - \text{Im}(z) < 1\}$$

4. (10 pts) Let $G \subset \mathbb{C}$, G open, and let $f : G \to \mathbb{C}$, f(z) = u(x, y) + iv(x, y), z = x + iy. Prove that if f is continuous on G, then u and v are continuous on G.

- 5. (10 pts) For each of the following cases, give an example such that the described properties holds or if such an example does not exist then state so:
 - a. Let A, B be connected subsets of \mathbb{C} such that $A \cap B \neq \emptyset$ and $A \cap B$ is not connected
 - b. Let A, B be connected subsets of \mathbb{C} such that $A \cap B \neq \emptyset$ and $A \cap B$ is connected
 - c. Let *A*, *B* be subsets of \mathbb{C} such that $\overline{A \cap B} \neq \overline{A} \cap \overline{B}$
 - d. Let A, B be subsets of \mathbb{C} such that $\overline{A \cup B} \neq \overline{A} \cup \overline{B}$
 - e. Let $\{x_n\}$ be a sequence in \mathbb{R} such that $\liminf x_n = \limsup x_n$ but $\lim x_n$ does not exist.