1.2	Page 2	1a,b,e,f, 2a,d,e,f, 3, 4c, 5-6
1.3	Page 4	1, 3
1.4	Page 5	1-3, 5, 7
1.6	Page 10	2, 4, 5
2.1	Page 13	2, 7, 10e, 11
2.2	Page 17	3, 4

P. 1. Prove there does not exist an order relation \prec on \mathbb{C} such that $(\mathbb{C}, +, \bullet, \prec)$ is an ordered field.

HomeWork #2 Due Sep 22

- 2.3 Page 20 1, 3-6, 8
- 2.5 Page 28 1, 3-6, 10
- 3.1 Page 33 2-7
- P. 1. Find the loci of points satisfying:
 - a) $\operatorname{Re} \frac{1}{z} > \frac{1}{2}$ b) $|z^{2} - 1| = \alpha, \alpha > 0$
- P. 2. Let $M = \{x \mid 0 \le x \le 1, x = 0.x_1x_2x_3x_4x_5\cdots, x_i \text{ odd}\}$ i.e., *M* is the set of numbers between 0 and 1 (inclusively) with infinite decimal representations all of whose digits are odd.

Question. Is *M* closed?

P. 3. Suppose $\{z_n\} \to \varsigma$. Show $z'_n = \frac{z_1 + z_2 + \dots + z_n}{n} \to \varsigma$.

Homework #3 Due Oct 13

3.1Page 332-73.2Page 431, 3-4, 6-12, 14-15, 17, 19, 21

Homework #4 Due Oct 27

- 3.3 Page 54 1, 3, 5, 8, 10, 13-18, 20, 22-23, 28, 30
- P. 1. Let $f(z) = \exp(-1/|z|)$. Show that this function is uniformly continuous on $D = \{ z : 0 < |z| < 1 \}.$
- P. 2. Show that $e^z > 1 + z$ for $z \in \mathbb{R}, z \neq 0$.
- Find all solutions of: P. 3. $\cos 2z = 3i$
 - a) b)
 - $\sin z = 8$
- P. 4. The domain $\{z : |z| < 1\}$ is mapped onto the upper half-plane by a bi-linear transformation which takes 1, *i*, -1 into 0, $1, \infty$, respectively. Find the mapping. What are the images of the radii of the unit circle leading (from 0) to the points 1, i, -1, -i?
- P. 5. Let D = B(0,1) and $E = B(0,1) \setminus B(-1/2,1/2)$. Find the unique one-to-one, conformal mapping $f: D \rightarrow E$, $f(0) = \frac{1}{2}$, f'(0) > 0.
- P. 6. Let D = B(0,1) and $E = B(0,1) \setminus (-1, -\frac{1}{2})$. Find the unique one-to-one, conformal mapping $f: D \rightarrow E, f(0) = 0, f'(0) > 0$.

Homework #5 Due Nov 17

4.1	Page 67	1, 5-7, 8-13, 16, 19-22
4.2	Page 73	1-5, 7a,c,d, 8, 9a-d, 10-11, 13

Homework #6 Due Dec 1

4.3	Page 80	1-2, 4, 6-10
4.5	Page 87	1, 3, 4, 6-9

Homework #7 Not Assigned

4.6	Page 95	4-6, 8, 10-11
4.7	Page 99	2-4, 6-7
5.2	Page 121	1,a,c, 2,a,b,c,d, 3-4, 6
5.3	Page 126	2, 6, 9-10

P. 1. Verify the parenthetical comment on page 98:

To show the second equality above takes a little effort, although for γ smooth it is easy. The details are left to the reader. 5.1 Page 110 1a,b,c,e,h,j, 4, 6, 8, 10, 13-14, 16