Answer the problems on separate paper. You do <u>not</u> need to rewrite the problem statements on your answer sheets. Work carefully. Do your own work. **Show all relevant supporting steps!**

- 1. Let $z = \sqrt{3} i$ and w = -2 + 2i. Find $\frac{w^3}{z^9}$ and express the value in rectangular form.
- 2. Let (X,d) be a metric space and let $A \subset X$. Prove: A is closed if and only if $A = \overline{A}$.
- 3. Classify the following sets as to whether they are: a) open, b) closed, c) connected, d) polygonally path-connected, e) compact, f) complete, g) bounded, h) region.

You do not need to provide a rationale for your classification. Use the table on the last page to record your classifications.

1.
$$A = \{(x, y) : 0 < y < \frac{1}{x} | \sin \frac{1}{x} |, 0 < x < \pi\}$$

2.
$$B = B(1,1) \setminus \overline{B(\frac{1}{2}, \frac{1}{2})}$$

3.
$$C = S \setminus \overline{B(0,\pi)}$$
 where $S = \{z : |\text{Re } z| < 1\}$

4.
$$D = B(2,2) \setminus \overline{B(2-2i,\sqrt{8})}$$

4. Find the radius of convergence of the power series

1.
$$\sum_{n=0}^{\infty} \frac{2^n n! n!}{(2n)!} (3z+1)^n$$

2.
$$\sum_{n=0}^{\infty} a_n (z+i)^n \text{ where the power series represents } f(z) = \tan z$$

- 5. Let $G = \{z = re^{i\theta}: 0 < r < 1, 0 < \theta < \frac{\pi}{2}\}$ and let $S = \{z : |\operatorname{Re} z| < 1\}$. Find a one-to-one conformal map from G to S.
- 6. The line $L = \{z : \text{Im } z = 0\}$ and the circle $C_1 = \{z : |z-1| = 1\}$ divide $D = \{z : |z| < 1\}$ into 4 subregions D_1, D_2, D_3 and D_4 . See figure to the right. Let $w = \frac{z}{z-2}$. Find the images E_j of each subregion D_j under w, i.e., find $E_j = w(D_j), \quad j = 1, 2, 3, 4$.

7. Let G be a region in \mathbb{C} and let $f \in \mathcal{A}(G)$, f = u + iv. Prove that if $u^2 - v^2 = 1$ on G, then f is constant on G.

- 8. Evaluate each of the following integrals:
 - 1. $\int_{\gamma} (\text{Re } z + (\text{Im } z)^2) dz \text{ where } \gamma \text{ is a parametrization of the straight line segment from 1 to } i.$
 - 2. $\int_{\gamma} \frac{\cos z + 1}{z^3} dz$ where γ is a positively (counter-clockwise) oriented parametrization of the unit circle $C = \{z : |z| = 1\}$
 - 3. $\int_{\gamma} \frac{z+1}{z^2 2z} dz$ where γ is a parametrization of the figure eight curve oriented as given in the figure to the right

4. $\int_{\gamma} \frac{dz}{\sqrt{z}}$ where γ is a parametrization of the arc

 Γ of the unit circle $C=\{z:|z|=1\}$ from i to -i passing through -1 (see figure to the right) and where \sqrt{z} is the branch of square root z chosen so that the branch cut is taken as the positive real axis, $[0,\infty)$, such that $\sqrt{-1}=i$

5. $\int_{\gamma} \frac{1+z}{e^z - e^{-z}} dz$ where γ is a positively (counter-clockwise)

oriented parametrization of the circle $C_2 = \{z : |z-2|=1\}$

- 9. Prove that if f is an entire function and if there exist positive constants A and B such that $|f(z)| \le A |z| + B$ for all $z \in \mathbb{C}$, then f is a linear function.
- 10. Let $D=\{z:|z|<1\}$ and let $f\in\mathcal{A}(D)$ such that $f(D)\subset D$. Prove for $z\in D$ that $|f'(z)|\leq \frac{1}{1-|z|}.$ Hint. Suppose $z\in D$. Then, there exists a $\rho>0$ such that $\overline{B(z,\rho)}\subset D$.
- 11. Let $D = \{z : |z| < 1\}$ and let $f \in \mathcal{A}(D)$ such that $f(D) \subset D$. Suppose that for each integer n > 1 that f satisfies $f(\frac{i}{n}) = -\frac{i}{n^3}$. Find the value of $f(\frac{1}{2} + \frac{1}{2}i)$.
- 12. State and prove Louiville's Theorem.

Classification Table for Problem 3

	open	closed	connected	polygonally path connected	compact	complete	bounded	region
A								
В								
С								
D								