Exam I

TakeHome - Due October 4

Answer the problems on separate paper. You do <u>not</u> need to rewrite the problem statements on your answer sheets. Work carefully. Do your own work. <u>Show all relevant supporting steps!</u>

- 1. (6) For z∈ C let Z denote the point on S which is the stereographic projection of z. For z∈ C \{0} let z* denote the point in C such that Z* = -Z. Prove or disprove: If T, the triangle determined by the vertices {z₁, z₂, z₃}, for which none of the vertices z_j = 0, j = 1, 2, 3, is a right triangle, then T*, the triangle determined by the vertices {z₁*, z₂*, z₃*}, is a right triangle.
- 2. (6) Let $S = \{z : | z \frac{1}{2} | \le \frac{1}{2} \}$. Let $T = \{w : w = \frac{1}{1-z}, z \in S \setminus \{1\}\}$. Geometrically describe the set T.
- 3. (8) For each of the following cases, give an example of a metric space (X, d), where $X \subset \mathbb{C}$ and d is the inherited metric such that
 - a. there exists a sequence $\{z_n\} \subset X$ such that no subsequence of $\{z_n\}$ converges.
 - b. there exists a sequence $\{z_n\} \subset X$ such that $\{z_n\}$ is Cauchy, but $\{z_n\}$ does not converge.
 - c. there exists a sequence $\{z_n\} \subset X$ such that there exists two subsequences of $\{z_n\}$, say $\{z_{n_i}\}$ and $\{z_{n_k}\}$, such that $\{z_{n_i}\} \to z'$ and $\{z_{n_k}\} \to z''$ and $z' \neq z''$.
 - d. every point of X is a limit point of X.
- 4. Omit.

5. (6) Let $M = \left\{ \begin{bmatrix} a & b \\ -b & a \end{bmatrix} : a, b \in \mathbb{R} \right\}$ and let \oplus , \odot denote matrix addition and matrix multiplication, resp.. Show that $(\mathbb{C}, +, \bullet)$ and (M, \oplus, \odot) are isomorphic (fields).

6. (12) Sketch the set:

- a. $|z| \arg z = \frac{p}{2}$
- b. |z+1| = |2z-1|

In 7, for metric spaces (X, d) and (Ω, \mathbf{r}) let Hom(X, Y) denote the set of homeomorphisms between X and Y, i.e., the set of all functions $f: X \to Y$ such that: (i) f is continuous on X; (ii) f is one-to-one; (iii) f is onto; (iv) f^{-1} is continuous on Y.

7. (6) Let
$$f : \mathbb{C} \to \mathbb{C}$$
 be given by $f(z) = \frac{z}{1+|z|}$. Show that $f \in Hom(\mathbb{C}, B(0, 1))$.

8. (6) Let (X, d) be a metric space and let A, B be subset of X such that $A \subset B$. Show that $\overline{A} \subset \overline{B}$.

Extra Credit. (3)

For metric spaces (X, d) and (Ω, \mathbf{r}) , give an example which shows that there exists $f: X \to Y$, *f* is one-to-one on *X*, *f* is onto *Y*, but $f \notin Hom(X, Y)$.