Review for Exam I

- 1. Chapter 6
 - A. Properties of Sets
 - Open, Closed, Relatively Open i.
 - Connected, Diameter, Bounded, Totally Bounded ii.
 - Examples of Sets with Properties in A. Β.
 - \mathbf{R}^1 \mathbf{R}^2 i. ii. 1^{2} iv.
 - iii. **R**_d
 - C. **Metric Spaces**
 - Complete i.
 - ii. Compact
 - Examples of Metric Spaces with Properties in C. D.
 - E. Continuous Functions on Compact, Connected Metric Spaces
 - Real-valued continuous functions on closed bounded intervals [a,b] i.
 - **Uniform Continuity** F.
 - Continuous functions on compact metric spaces. i.
 - G. Theorems whose proofs you should know
 - i. Theorem 6.2D (Image of connected set under continuous function is again connected.)
 - ii. Theorem 6.6A (Image of a compact metric space under continuous function is again compact.)
 - H. **Representative Problems**
 - Given a set S, identify which of the properties in 1.A the set S possesses. i.
 - ii. Identify a set S which has a specified list of properties (from 1.A).
 - iii. Given a metric space M, identify which of the properties in 1.A and 1.C the space M possesses.
 - iv. Identify a metric space M which has a specified list of properties (from 1.A and 1.C).
 - Page 149, #2 v. vi.
 - Page 156, #2 vii. Page 166, #2-4
- Page 171, #3, 7 xii.
- 2. Chapter 7
 - A. Sets of Measure Zero

ix.

xi.

- Β. Definition of "holds almost everywhere"
- C. Definition of Upper and Lower Sums for a Bounded Function on a Bounded Interval
- Definition of Riemann Integral for a Bounded Function on a Bounded Interval D.
- Theorem 7.3A (Statement) E.
- F. **Representative Problems**
 - i. Given a set S, identify whether the set is of measure zero
 - ii. Given a function f, identify whether it is continuous a.e.
 - iii. Page 180, #1, 3-5
 - Page 184, #1-2, 4, 9 iv.
 - Page 187, #1-5 v.

Page 153, #2, 4 viii. Page 163, #4-8, 10 Page 167, #4 X. Page 177, #10-11