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Solution Set #8

Section 9.1

1. Yes.  Take N = 11.  Then for n $ N,  .

2. a. For 0 # x < 1, we know that x  v 0 as n v 4.  Hence, for 0 # x < 1, we haven

f  (x) v 0.  For x = 1, we have x  = 1; so  f  (1)  =  ½.    Hence, { f  } converges n  n  n
n

pointwise on [0,1] to the function .  

b. No.  For any n, we have  f   is continuous at x = 1.  Hence, for any n there exists a n

neighborhood of x = 1 on which |  f  (x) - ½ | < ¼.  But, then on thatn

neighborhood, for x ú 1, we cannot have |  f  (x) - 0 | < ¼.n

3. a. Let x 0 [0,1].  If x = 0, then   f  (0)  =  0 for all n.  Hence,  f  (0) v 0 as n v 4.   n  n

If x > 0, then there exists (by the Archimedian principle) an N such that for n $ N

we have 1/n < x.  Hence, for n $ N we have  f  (x)  =  0 and, hence,  f  (0) v 0 as n  n

n v 4.

b. No.  For any n, we have that f  (x) = n > ½ for 0 < x < 1/n.n

c. For each n, .  Hence, 

d. We have from a. and c. that 

Section 9.2

1. Let {f } converge uniformly on E to f  and let {g } converge uniformly on E to g.  Wen n

claim that {f  + g  } converges uniformly on E to f + g.  Let g > 0 there exists N  such thatn n 1

for n > N  we have | f  (x) - f (x) | < g/2 for all x 0 E and there exists N  such that for n >1 n 2

N  we have | g  (x) - g (x) | < g/2 for all x 0 E.  Let N = max(N  , N ).  Then, for n > N  we2 n 1 2 2

have | (f  + g ) (x) -  (f + g) (x) |  # | f  (x) - f (x) |  + | g  (x) - g (x) | < g/2 + g/2  = g for alln n n n

x 0 E.  Hence, {f  + g  } converges uniformly on E to f + g.n n

2. On [0, 4)  we have that | g  (x) | # g  (0) = 1/n since g  is a non-negative decreasingn n n

function of x.  The sequence {1/n} converges monotonically to 0.  Let g > 0 there exists N
such that for n > N we have 1/n < g.  Hence, for n > N we have | g  (x) - 0 |  = | g  (x) | # gn n n

(0) = 1/n < g for all x in [0, 4).  Thus, { g  } converges uniformly to 0 on [0,4).n
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4. a. On [0,½] we have that | f  (x) | # f  (½) =  since f  is a non-negativen n n

increasing function of x on [0,½].  Since the sequence { } converges

converges monotonically to 0, we have by the same argument as employed in 2.
above that { f  } converges uniformly to 0 on [0,½].n

b. The conclusion of problem 2b. in Section 9.1 is that for g = ¼ there does not exist
a  N  such that for n $ N we can have |  f  (x) - 0 | < g on [0,1).  Hence, we cannotn

have uniform convergence on [0,1].

Section 9.3

1. If the sequence { f } were to be uniformly convergent on [0,4), then since each f  isn n

continuous on [0,4) we would have to have the limit function continuous on [0,4).  But,

the limit function is which is not continuous at x = 1.  Hence, we

cannot have uniform convergence on [0,4).

Section 9.4

1. a. Apply the Weierstrass M-Test with M  = 1/n .  Then, on [0,4) we haven
2

.  Since the series  converges, then by the

Weierstrass M-Test we have  converges uniformly on [0,4).

3. Apply the Weierstrass M-Test with M  = | a  |.  Then, on [0,1] we have | a  x  | # | a  | =n n n n
n

M .  Since by hypothesis series  converges, then by the Weierstrass M-Test wen

have  converges uniformly on [0,1].

4. If the series  converges, then the power series  converges for x =

x  = 1.  By Theorem 9.4F the power series converges uniformly  on [-x  , x ] for all x0 1 1 1

such that 0 < x  < x  = 1.  Hence, on each such interval [-x  , x ] with 0 < x  < x  = 1 the1 0 1 1 1 0

power series f  is a continuous function.  But every x in (-1,1) belongs to an interval of the
form [-x  , x ] with 0 < x  < x  = 1, namely the interval [-x,x].1 1 1 0
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Section 9.5

1. By the above problem 9.4.3, the power series  converges uniformly on [0,1]. 

Hence, by Theorem 9.5A .

2. Since the power series  has radius of convergence of infinity,

i.e., since the power series converges on all intervals (-S , S) for all S > 0, then by
Theorem 9.5C the sin x is differentiable on all intervals (-S , S) for all S > 0, and

 on (-4, 4).


