Solution Set #8

Section 9.1

- 1. Yes. Take N = 11. Then for $n \ge N$, $\left| \frac{\sin nx}{n} 0 \right| = \left| \frac{\sin nx}{n} \right| \le \frac{1}{n} \le \frac{1}{N} < \frac{1}{10}$.
- 2. a. For $0 \le x < 1$, we know that $x^n \to 0$ as $n \to \infty$. Hence, for $0 \le x < 1$, we have $f_n(x) \to 0$. For x = 1, we have $x^n = 1$; so $f_n(1) = \frac{1}{2}$. Hence, $\{f_n\}$ converges pointwise on [0,1] to the function $f(x) = \begin{cases} 0 & 0 \le x < 1 \\ \frac{1}{2} & x = 1 \end{cases}$.
 - b. No. For any n, we have f_n is continuous at x = 1. Hence, for any n there exists a neighborhood of x = 1 on which $|f_n(x) \frac{1}{2}| < \frac{1}{4}$. But, then on that neighborhood, for $x \ne 1$, we cannot have $|f_n(x) 0| < \frac{1}{4}$.
- 3. a. Let $x \in [0,1]$. If x = 0, then $f_n(0) = 0$ for all n. Hence, $f_n(0) \to 0$ as $n \to \infty$. If x > 0, then there exists (by the Archimedian principle) an N such that for $n \ge N$ we have 1/n < x. Hence, for $n \ge N$ we have $f_n(x) = 0$ and, hence, $f_n(0) \to 0$ as $n \to \infty$.
 - b. No. For any n, we have that $f_n(x) = n > \frac{1}{2}$ for 0 < x < 1/n.
 - c. For each n, $\int_0^1 f_n = \int_0^{1/n} n = 1$. Hence, $\lim_{n \to \infty} \int_0^1 f_n = 1$
 - d. We have from a. and c. that $\lim_{n \to \infty} \int_0^1 f_n \neq \int_0^1 \lim_{n \to \infty} f_n$

Section 9.2

- 1. Let $\{f_n\}$ converge uniformly on E to f and let $\{g_n\}$ converge uniformly on E to g. We claim that $\{f_n+g_n\}$ converges uniformly on E to f+g. Let $\varepsilon>0$ there exists N_1 such that for $n>N_1$ we have $|f_n(x)-f(x)|<\varepsilon/2$ for all $x\in E$ and there exists N_2 such that for $n>N_2$ we have $|g_n(x)-g(x)|<\varepsilon/2$ for all $x\in E$. Let $N=\max(N_1,N_2)$. Then, for $n>N_2$ we have $|(f_n+g_n)(x)-(f+g)(x)|\leq |f_n(x)-f(x)|+|g_n(x)-g(x)|<\varepsilon/2+\varepsilon/2=\varepsilon$ for all $x\in E$. Hence, $\{f_n+g_n\}$ converges uniformly on E to f+g.
- 2. On $[0, \infty)$ we have that $|g_n(x)| \le g_n(0) = 1/n$ since g_n is a non-negative decreasing function of x. The sequence $\{1/n\}$ converges monotonically to 0. Let $\varepsilon > 0$ there exists N such that for n > N we have $1/n < \varepsilon$. Hence, for n > N we have $|g_n(x) 0| = |g_n(x)| \le g_n$ $(0) = 1/n < \varepsilon$ for all x in $[0, \infty)$. Thus, $\{g_n\}$ converges uniformly to 0 on $[0, \infty)$.

- 4. a. On $[0,\frac{1}{2}]$ we have that $|f_n(x)| \le f_n(\frac{1}{2}) = \frac{1}{2^n + 1}$ since f_n is a non-negative increasing function of x on $[0,\frac{1}{2}]$. Since the sequence $\{\frac{1}{2^n + 1}\}$ converges converges monotonically to 0, we have by the same argument as employed in 2. above that $\{f_n\}$ converges uniformly to 0 on $[0,\frac{1}{2}]$.
 - b. The conclusion of problem 2b. in Section 9.1 is that for $\varepsilon = \frac{1}{4}$ there does **not** exist a N such that for $n \ge N$ we can have $|f_n(x) 0| < \varepsilon$ on [0,1). Hence, we cannot have uniform convergence on [0,1].

Section 9.3

1. If the sequence $\{f_n\}$ were to be uniformly convergent on $[0,\infty)$, then since each f_n is continuous on $[0,\infty)$ we would have to have the limit function continuous on $[0,\infty)$. But,

the limit function is
$$f(x) = \begin{cases} 1 & 0 \le x < 1 \\ \frac{1}{2} & x = 1 \\ 0 & x > 1 \end{cases}$$
 which is not continuous at $x = 1$. Hence, we

cannot have uniform convergence on $[0,\infty)$.

Section 9.4

- 1. a. Apply the Weierstrass M-Test with $M_n = 1/n^2$. Then, on $[0,\infty)$ we have $\frac{1}{n^2 + x^2} \le \frac{1}{n^2} = M_n$. Since the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges, then by the Weierstrass M-Test we have $\sum_{n=1}^{\infty} \frac{1}{n^2 + x^2}$ converges uniformly on $[0,\infty)$.
- 3. Apply the Weierstrass M-Test with $M_n = |a_n|$. Then, on [0,1] we have $|a_n| \le |a_n| = M_n$. Since by hypothesis series $\sum_{n=1}^{\infty} |a_n|$ converges, then by the Weierstrass M-Test we have $\sum_{n=1}^{\infty} a_n x^n$ converges uniformly on [0,1].
- 4. If the series $\sum_{n=1}^{\infty} a_n$ converges, then the power series $f(x) = \sum_{n=1}^{\infty} a_n x^n$ converges for $x = x_0 = 1$. By Theorem 9.4F the power series converges uniformly on $[-x_1, x_1]$ for all x_1 such that $0 < x_1 < x_0 = 1$. Hence, on each such interval $[-x_1, x_1]$ with $0 < x_1 < x_0 = 1$ the power series f is a continuous function. But every x in (-1,1) belongs to an interval of the form $[-x_1, x_1]$ with $0 < x_1 < x_0 = 1$, namely the interval [-x,x].

Section 9.5

- 1. By the above problem 9.4.3, the power series $\sum_{n=1}^{\infty} a_n x^n$ converges uniformly on [0,1]. Hence, by Theorem 9.5A $\int_0^1 \sum_{n=0}^{\infty} a_n x^n dx = \sum_{n=0}^{\infty} \int_0^1 a_n x^n dx = \sum_{n=0}^{\infty} \frac{a_n}{n+1}$.
- 2. Since the power series $\sin x = x \frac{x^3}{3!} + \frac{x^5}{5!} \cdots$ has radius of convergence of infinity, i.e., since the power series converges on all intervals (-S, S) for all S > 0, then by Theorem 9.5C the $\sin x$ is differentiable on all intervals (-S, S) for all S > 0, and $\cos x = (\sin x)^7 = 1 3\frac{x^2}{3!} + 5\frac{x^4}{5!} \cdots = 1 \frac{x^2}{2!} + \frac{x^4}{4!} \cdots$ on $(-\infty, \infty)$.