Solution Set #6

Section 7.10

la.  No. (f — dxdlverge3|f p> 1)
0

1b. Yes (fol % dx convergesif p < 1)

1c. Yes. ( X < 2 1 < 2 1 for x € [0,2] and

(16-x9¥  [(4x)@0]" @-0% 8% (-9

f b1 convergesif p < 1)

a (b_x)p

le. Yes. (lim x¥log(1/x) = Owhich implies there exists a constant A such that
x-0"
log (1/X) A

< for x € (0,1] and f — dx convergesif p < 1)

\/7 X3/

sinx

< L for x € [0,1] and
1/2

1f. Yes. (sinx < xfor x e [0,1] which implies that
X3/2 X

f 1L convergesif p<1)
0

X P
s 1 -
3 1 X%
fo 1+x
s-1
convergent. fl )1( dx isconvergent if and only if 1- s<1,i.e,0<s. Since
0 +X

s-1 s-1
X < X = 1 for x > 1, then
1+x X x2S

5a. Yes. (sintisanodd function; therefore, the C.P.V. f‘” sintdt=0.

5b. No. (Jsint|isan even function and f‘” |sint| dt diverges)
0



5c. Yes. (1/(1+t? isan even function and f dt converges)
1+t?
7. If f iscontinuouson [0,1], thenf attains a maximum on [0,1], say M. We have then that
LG L vt ad f ° dx convergesif p < 1. Therefore,
V1-x2 1+X y/1-X V1-x a (b-x)P
f LI converges. We have f f) gy - Ilmf I Letting x =
Y1-x? V1-x2 V1-x?
sin u, then from Theorem 7.8G we have f F) g - farcs'n(b) f(sin(u)) du.
J1-x2 0
Therefore, we have
5 FO gy = gim e T g - - fim [ f(sin(u)) du = [ F(sin(u)) du.
V1-x2 b-1"0 /1 -x?2 -1770 0
Section 8.1
_ sinh(-x) _ -sinh(x) _
la  tanh(-x) = = [by (9) and (10 - tanh(x
(-X) cosh(-) [by (9) (10)] cosh() (X)
1b. By (8) C(x) = S(x); hence, C"(x) = S(x). Then, by (7) S(x) = C(x). Therefore, C'(x) =
C(x).
1lc. By S(x) = C(x) and C(x) > 0 on (-, «). Theorem 7.7B impliesthat S(x) is strictly
increasing on (-, ).
1d.  Sinceby (5) S'(x) = S(x) on (-, ) and since S(0) = 0O, then 1c (above) implies that
S’(x) >0for x> 0and S’(x) <0 for x <0. Hence, Sisconcave up for x> 0and Sis
concave down for x < 0.
Section 8.2
la By (14) we have E(x) > 0 and by (15) E'(x) > 0. Thus, Theorem 7.7B implies that E(x) is
strictly increasing on (-, «). By the comments following (14) we have that
limE(X) = «. By (12) E(-x) = LE(X). Hence, we must have
X—oo
limE(-x) = imVE(XX) = 0, i.e, limE(X) = 0.
X—eo X—o0 X— —co
1b. By (15) E'(x) = E(x) on (-, «); hence, E"(X) = E(X) on (-», «). By (14) E(X) > 0 on

(o0, ) which implies E"(x) > 0 on (-, ). Hence, E(X) is concave on (-«, ).
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(COY+SH+(CX+-SM) _ 2C0) _
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E(Q) -E(-x) _ (C)+SX))-(C(-x)+S(-X)) _

2

2

sinh(x)cosh(y) + cosh(x)sinh(y) = e’

(CHX)+SX)-(CXH)+-Sx)) _ 289%)
2 2

= )

e*+e X e¥-e?V _

_e’X e Y+e’y
+

2 2 2 2
eX+Y+eX’y_e’X+y_e’(X*Y) eX+y_eX’Y+e’X+y_e’(X*Y)
4 4 )
Xty _9a ~(x+y) Xty _ = (Xty)
- S - simpy)

By 4a (above) sinh(2x) = sinh(x + X) = sinh(x)cosh(x) + cosh(x)sinh(x) =
2sinh(x)cosh(x).

Using 4b cosh(2x) = cosh(x + x) = cosh(x)cosh(x) + sinh(x)sinh(x) = cosh? x + sinh? X.

tanh x =

e*-e*
sinhx 2 _eX-e™
coshx eXig X eXig X
2

Because tanh’ (X) = sech?(x) > 0 on (-», =), we have that tanh(x) isincreasing on (-, ).

We have, from 5a (above) limtanhx = lim

X o0

Hence, the range of tanh x is (-1,1).

eX_gX

x-= @X+@ X

= 1. Similarly, lim tanhx = -1.

X— —oo

Notethat 1 - tanh? x = sech? x. Let y = w(x) be the inverse function to tanh, i.e., let x =
tanhy. Then, differentiating we have 1 = (sech? y) y'. Solving for y’ we have

!/

1

1

1

sech?y

1- tanh?y

1-x2



Section 8.3

la. Applying Theorem 7.8A to the representation for L(x) in (23) we have L'(x) = 1/x for x in
(0,»). Then, Theorem 7.7B implies that L(X) is increasing for x ia)(0,

1b. From la (above) we have L" (x) = ?/x < 0 for x ieY0,Hence, L is concave down on
(0).

3a. f(x) =x =exp(alog x). Hencé, (x) = exp(a log x) a (1/x) = &x (1/x) = &'x

3b. f(x)=d& =exp(xlog a). Henck, (x) = exp(x log a) (log a) =*a (log a).

4, By the second mean value theorem for integrals (Theorem 8.5D) we have (for some ¢
between 1 and x ( in the case that x > 1)

Loy 1l =f Lot - =Iog)
1 t3/2 1 tl/2 t Cl/2
Hence,i L dt > logx (> 0) forx>1. Hence, integrating the left-hand side
xV2 J1 32 X
we have 1 2 /x-1 > log > 0 for x> 1. But, then the squeeze theorem implies
X1/2 \/7( X

that as x tends to infinity that (log x)/x tends to 0.

Section 8.4

la. By (35) sint/2 - x) = sinf/2)cos(x) - cost/2)sin(x). But sinf/2) = 1 and cosf2) = 0
(see remarks following line (29)). So, ¥ -x) = cos(X).

1b. By (36) cosf/2 - x) = cosf/2)cos(x) + sing/2)sin(x). But sinf/2) = 1 and cos(2) =0
(see remarks following line (29)). So, c@2(-x) = sin(x).

2a. By (36) cos(2x) = cos(x + X) = cos(x)cos(X) - sin(x)sin(x) £ cos ¥-sin x. But the later
equals, by (34) (1 - sin x) - $in x. Hence, cos(2x) =1 -2 sin x.

3a. By 2a (above) and the remarks following line (29) 0 = cos/42)(= 1 - 2 siAn/4.

Hence, sint/4 = ii . Since sin x > 0 for 0 < x®2, we have sin/4 = 1 . Mutatis
V2 V2

mutandis, we have cag4 = 1 )

N



According to line (28) wehavesin(x + 2r) =sin( (x + ) + ) =-sn( X + t) =- (- SN X)
=snXx. By line (30) and we have cos(x) = sin’(x). But the derivative of sine satisfies
according to the remarks following line (30) the relation sin'(x+x) = -sin'(x). Hence,
repeating the above argument we have cos(x + 2r) = cos(X).

By the quotient rule

- _ - _ - - 2
(tanx)’ - (smx)/ _ COSXCoSX - sinx(-sinx) _ cos?x+sinfx 1 - s x
C

0S X cos® X cos® X cos® X

Notethat 1 +tan® x = sec? X. Let y = w(x) betheinverse functionto tan, i.e., let x = tan
y. Then, differentiating we have 1 = (sec?y) y'. Solving for y’ we have

gL o1 1
sec?y  l+tan?y  1+x?2




