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Solution Set #6

Section 7.10

1a. No. ( diverges if p $ 1)

1b. Yes. (  converges if p < 1)

1c. Yes. (   for x 0 [0,2] and

 converges if p < 1)

1e. Yes. ( which implies there exists a constant A such that

 for x 0 (0,1] and   converges if p < 1)

1f. Yes. (sin x # x for x 0 [0,1] which implies that  for x 0 [0,1] and 

 converges if p < 1)

3.  is convergent if and only if both  and  are

convergent.   is convergent if and only if  1- s < 1, i.e., 0 < s.  Since

 for x $ 1, then  is convergent if and only if 2 - s > 1,

i.e., s < 1.  Therefore,  is convergent if and only if 0 < s < 1.

5a. Yes. (sin t is an odd function; therefore, the C.P.V. = 0.

5b. No. (|sin t| is an even function and diverges)
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5c. Yes. ( 1/(1+t ) is an even function and  converges)2

7. If f  is continuous on [0,1], then f  attains a maximum on [0,1], say M.  We have then that

 and  converges if p < 1.  Therefore,

 converges.  We have .  Letting x =

sin u, then from Theorem 7.8G we have . 

Therefore, we have

.

Section 8.1

1a. tanh(-x) =  = - tanh(x)

1b. By  (8)  C’(x) = S(x);  hence, C’’(x) = S’(x).  Then, by (7)  S’(x) = C(x).  Therefore, C’’(x) =
C(x).

1c. By S’(x) = C(x) and C(x) > 0 on (-4, 4).  Theorem 7.7B implies that S(x) is strictly
increasing on (-4, 4).

1d. Since by (5) S’’(x) = S(x) on (-4, 4) and since S(0) = 0, then 1c (above) implies that
S’’(x) > 0 for x > 0 and S’’(x) < 0 for x < 0.  Hence, S is concave up for x > 0 and S is
concave down for x < 0.

Section 8.2

1a. By (14) we have E(x) > 0 and by (15) E’(x) > 0.  Thus, Theorem 7.7B implies that E(x) is
strictly increasing on (-4, 4).  By the comments following (14) we have that

.   By (12) E(-x) = 1/E(x).  Hence, we must have

.

1b. By (15) E’(x) = E(x) on (-4, 4); hence, E’’(x) = E(x) on (-4, 4).  By (14) E(x) > 0 on
(-4, 4) which implies E’’(x) > 0 on (-4, 4).  Hence, E(x) is concave on (-4, 4).
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3.

4a.

4c. By 4a (above)  sinh(2x) = sinh(x + x) = sinh(x)cosh(x) + cosh(x)sinh(x) =
2sinh(x)cosh(x).

4d. Using 4b cosh(2x) = cosh(x + x) = cosh(x)cosh(x) + sinh(x)sinh(x) = cosh  x + sinh  x.2 2

5a. tanh x = 

5b. Because tanh’ (x) = sech (x) > 0 on (-4, 4), we have that tanh(x) is increasing on (-4, 4). 2

We have, from 5a (above) .  Similarly, . 

Hence, the range of tanh x is (-1,1).

5c. Note that 1 - tanh  x = sech  x.  Let y = w(x) be the inverse function to tanh, i.e., let x = 2 2

tanh y.  Then, differentiating we have 1 = (sech  y) y’.  Solving for y’ we have2

 .
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Section 8.3

1a. Applying Theorem 7.8A to the representation for L(x) in (23) we have L'(x) = 1/x for x in
(0,4).  Then, Theorem 7.7B implies that L(x) is increasing for x in (0,4).  

1b. From 1a (above) we have L'' (x) = -1/x   < 0 for x in (0,4).  Hence, L is concave down on2

(0,4).

3a. f (x) = x  = exp(a log x).  Hence, f ' (x) = exp(a log x) a (1/x) = a x  (1/x) = a x .a a a-1

3b. f (x) = a  = exp(x log a).  Hence, f ' (x) = exp(x log a) (log a) =  a  (log a).x x

4. By the second mean value theorem for integrals (Theorem 8.5D) we have (for some c
between 1 and x ( in the case that x > 1)

Hence,  for x > 1.  Hence, integrating the left-hand side

we have   for x > 1.  But, then the squeeze theorem implies

that as x tends to infinity that (log x)/x tends to 0.

Section 8.4

1a. By (35) sin(/2 - x) = sin( /2)cos(x) - cos(/2)sin(x).    But sin(/2) = 1 and cos(/2) = 0
(see remarks following line (29)).  So, sin(/2 -x) = cos(x).

1b. By (36) cos(/2 - x) = cos(/2)cos(x) + sin(/2)sin(x).    But sin(/2) = 1 and cos(/2) = 0
(see remarks following line (29)).  So, cos(/2 -x) = sin(x).

2a. By (36) cos(2x) = cos(x + x) = cos(x)cos(x) - sin(x)sin(x) = cos  x - sin  x.  But the later2 2

equals, by (34) (1 - sin  x) - sin  x.  Hence, cos(2x) = 1 - 2 sin  x.2 2 2

3a. By 2a (above) and the remarks following line (29) 0 = cos (2 (/4)) = 1 - 2 sin  /4. 2

Hence, sin /4 =  .  Since sin x > 0 for 0 < x < /2, we have sin /4 = .  Mutatis

mutandis, we have cos /4 = .
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4. According to line (28) we have sin(x + 2 ) = sin( (x + ) +  ) = - sin( x + ) = - (- sin x)
= sin x.  By line (30) and we have cos(x) = sin’(x).  But the derivative of sine satisfies
according to the remarks following line (30) the relation sin’(x+ ) = -sin’(x).  Hence,
repeating the above argument we have cos(x + 2 ) = cos(x).

7. By the quotient rule

Note that 1 + tan  x = sec  x.  Let y = w(x) be the inverse function to tan, i.e., let x =  tan2 2

y.  Then, differentiating we have 1 = (sec  y) y’.  Solving for y’ we have2

 .


