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Solution Set #5

Section 7.8

1. By Theorem 7.8A .  Hence, .

2. (by Theorem 7.4C)

(by Theorem 7.4B)

(by Theorem 7.8E)

4. By Theorem 7.8A F ’ (x) = f (x) for x 0 [a,b].  Since f (x) > 0 for x 0 [a,b], we have
F ’ (x) > 0 for x 0 [a,b].  By Theorem 7.7B which is a corollary of the Mean Value
Theorem F is strictly increasing for x 0 [a,b].

5. Let for x 0 [a,b]. By Theroem 7.8A, F ’ (x) exists for x 0 [a,b] (and

equals f (x)) .  Note that F (a) = 0.  By the Mean Value Theorem there exists a c 0 (a,b)

such that .  Hence, .

Section 7.9

1a) No. ( diverges if p # 1).

1b) Yes. (  converges if p > 1).

1c) No. (  for x $ 1 and diverges if p # 1).

1d) Yes. (  for x $ 1 and  converges if p > 1).

1e) No. ( and does not

exist.)

1f) Yes. (  for x $ 1 and  converges if p > 1).
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1g) No. (  for x $ 1 and diverges if p # 1).

2. Let  and .  Then,  and

.  Hence,  and

.  Since , we have

.

4. False.  Let for x 0 [n,n+1], n 0 I.  Then, f  is continuous on [1,4).  {f  is
obviously piece-wise continuous on [1,4) and at each integer in [1,4) f  has two one-sided

limits which are the same (namely 0)}.  Let g > 0 and let .  Then, for s $ N

we have .  Hence, the integral converges, but

.

5. Proceeding by contradiction.  Suppose  L ú 0.  WoLog  L > 0.  Since, , then

there exists N such that for x > N we must have f (x) > L / 2.  But then, 

diverges which implies that  diverges which is a contradiction.

6. Let .  Then,  f (n) = 0 for all n 0 I and hence converges.  But, 

 diverges .

7. Let ,  for  n 0 I.
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which converges.


