Solution Set #5

Section 7.8

- 1. By Theorem 7.8A $f'(x) = \sqrt{x + x^6}$. Hence, $f'(2) = \sqrt{66}$.
- 2. $\int_{0}^{3} (3x^{2} 5) dx =$ (by Theorem 7.4C) $\int_{0}^{3} 3x^{2} dx + \int_{0}^{3} -5 dx =$ (by Theorem 7.4B) $3\int_{0}^{3} x^{2} dx -5 \int_{0}^{3} 1 dx =$ (by Theorem 7.8E) $3(\frac{2^{3}}{3} - 0) -5(2 - 0)$
- 4. By Theorem 7.8A F'(x) = f(x) for $x \in [a,b]$. Since f(x) > 0 for $x \in [a,b]$, we have F'(x) > 0 for $x \in [a,b]$. By Theorem 7.7B which is a corollary of the Mean Value Theorem *F* is strictly increasing for $x \in [a,b]$.
- 5. Let $F(x) = \int_{a}^{x} f(t) dt$ for $x \in [a,b]$. By Theroem 7.8A, F'(x) exists for $x \in [a,b]$ (and equals f(x)). Note that F(a) = 0. By the Mean Value Theorem there exists a $c \in (a,b)$ such that $\frac{F(b) F(a)}{b a} = F'(c) = f(c)$. Hence, $\int_{a}^{b} f(x) dx = f(c) (b a)$.

Section 7.9

- 1a) No. $(\int_1^{\infty} \frac{1}{x^p} dx \text{ diverges if } p \le 1).$
- 1b) Yes. $(\int_1^{\infty} \frac{1}{x^p} dx \text{ converges if } p > 1).$
- 1c) No. $(\frac{1}{2x} \le \frac{x}{1+x^2} \text{ for } x \ge 1 \text{ and } \int_1^\infty \frac{1}{x^p} dx \text{ diverges if } p \le 1).$

1d) Yes.
$$\left(\frac{43x^2}{1+2x^2+12x^4} \le \frac{43}{12}\frac{1}{x^2} \text{ for } x \ge 1 \text{ and } \int_1^\infty \frac{1}{x^p} dx \text{ converges if } p > 1\right).$$

1e) No. $\left(\int_{1}^{s} x \cos(x) dx = \cos(s) + s + \sin(s) - \cos(1) - \sin(1) = F(s)$ and $\lim_{s \to \infty} F(s)$ does not exist.)

1f) Yes.
$$(\frac{1}{(1+x^3)^{\frac{1}{2}}} \le \frac{1}{x^{\frac{3}{2}}}$$
 for $x \ge 1$ and $\int_1^{\infty} \frac{1}{x^p} dx$ converges if $p > 1$).

1g) No.
$$\left(\frac{1}{2x} \le \frac{1}{(1+x^3)^{\frac{1}{3}}} \text{ for } x \ge 1 \text{ and } \int_1^\infty \frac{1}{x^p} dx \text{ diverges if } p \le 1 \right).$$

2. Let
$$F(x) = \frac{1}{2} \frac{1}{(1+x)^2} - \frac{1}{1+x}$$
 and $G(x) = -\frac{1}{2} \frac{1}{1+x}$. Then, $F'(x) = \frac{x}{(1+x)^3}$ and
 $G'(x) = \frac{1}{2} \frac{1}{(1+x)^2}$. Hence, $\int_0^s \frac{x}{(1+x)^3} dx = F(s) - F(0) = F(s) + \frac{1}{2}$ and
 $\frac{1}{2} \int_0^s \frac{1}{(1+x)^2} dx = G(s) - G(0) = G(s) + \frac{1}{2}$. Since $\lim_{s \to \infty} F(s) = \lim_{s \to \infty} G(s) = 0$, we have
 $\int_0^\infty \frac{x}{(1+x)^3} dx = \frac{1}{2} = \frac{1}{2} \int_0^\infty \frac{1}{(1+x)^2} dx$.

4. False. Let $f(x) = \sin(2\pi nx)$ for $x \in [n,n+1]$, $n \in I$. Then, f is continuous on $[1,\infty)$. {f is obviously piece-wise continuous on $[1,\infty)$ and at each integer in $[1,\infty)f$ has two one-sided limits which are the same (namely 0)}. Let $\varepsilon > 0$ and let $N = [\frac{1}{\varepsilon}] + 1$. Then, for $s \ge N$

we have
$$\left|\int_{s}^{\infty} f(x) dx\right| \le \frac{1}{(N+1)\pi} < \frac{1}{\frac{1}{\epsilon}\pi} < \epsilon$$
. Hence, the integral converges, but
 $\lim_{x \to \infty} f(x) \ne 0$.

5. Proceeding by contradiction. Suppose $L \neq 0$. WoLog L > 0. Since, $\lim_{x \to \infty} f(x) = L$, then there exists N such that for x > N we must have f(x) > L/2. But then, $\int_{N}^{\infty} f(x) dx$ diverges which implies that $\int_{1}^{\infty} f(x) dx$ diverges which is a contradiction.

00

6. Let
$$f(x) = |\sin(\pi x)|$$
. Then, $f(n) = 0$ for all $n \in I$ and hence $\sum_{n=1}^{\infty} f(n)$ converges. But,
 $\int_{1}^{\infty} f(x) dx$ diverges.

7. Let
$$f(x) = \begin{cases} 2(x-n) + \frac{1}{n} & x \in [n - \frac{1}{2n}, n] \\ (-2(x-n) + \frac{1}{n} & x \in [n, n + \frac{1}{2n}], \text{ for } n \in I. \\ 0 & \text{otherwise} \end{cases}$$

Then, $f(n) = \frac{1}{n}$ and hence, $\sum_{n=1}^{\infty} f(n)$ diverges. But, $\int_{1}^{\infty} f(x) dx = \frac{1}{4} + \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n^2}$ which converges.