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Solution Set #4

Section 7.4

1. From theorems 7.4B and 7.4C we have

From problems 7.2.2 and 7.2.3  combined with 7.2.7 we have 

   and   

From class  for any constant c.  Hence,

4. To show that F is continuous at x in [a,b] requires showing that 

which is equivalent to showing 

.     (*)

To show (*), let g > 0.  Since f  is continuous on [a,b], we have by theorem 6.6D that f  is
bounded on [a,b], say by M.  Let  = g/M.  Claim that for | h | <  that | F (x+h) - F(x) | <
g, which will imply that (*) holds.  

Verification of the claim:  We have 

by theorems 7.4F (and 7.4G in the case where h < 0).  But, then

and the claim follows.

5. a) If 0 #  x #  1, then 1 #  x+1 #  2 and subsequently,  .  Hence,

.

b) From a) and theorem 7.4E we have .  But,

then from the comments in problem 1 we have .  Hence,
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7. If  f  is continuous at c in [a,b] and f (c) > 0, then there exists  > 0 such on the interval J
= B(c,  ) 1 [a,b] we have f (x) > f (c)/2 > 0.  Furthermore, note that |J| $  > 0.   Let  be

the characteristic function of the interval J and let .  Then, on [a,b] we

have f (x) $ g(x).  Hence, by theorem 7.4E we have .  But,

.

8. Suppose to the contrary that f  is not identically 0 on [a,b].  There, there exists a c in [a,b]

such that at c we have f (c) > 0.  Then, by problem 7 we have , which

contradicts the hypotheses of the problem.

Section 7.5

1. Suppose f  is the constant function  f (x) = c.  Then, for any x in [a,b] we have that 

.

2. The hypothesis that f ’(c) exists means that  exists.  But, then the limit

theorems imply that .  But, since g(x) =

bf (x) on an interval containing c, we have that g’ (c) exists and equals bf ’(c).

5. a) Let m = -n.  Then x  = 1/x .  If x ú 0, then theorem 7.5C (quotient rule) impliesn m

that .  But the latter term is nx .n-1

7. Since f ’ (c) exists and since a < c < b, then the lemma on page 195 implies that there
exists and interval (0, ) so that for all h 0 (0, ) we can write

f (c + h) = f (c) + h F (h)   (**)

where F  is continuous at h = 0 and F (0) = f ’(c) > 0.  

Since F is continuous at h = 0 and since F (0) > 0, there exists an interval (0, ) on which1

F(x) > 0.  Wolog we may take  < .  Then, for all h 0 (0, ) we have h F (h) > 0 and1 1

hence, from (**)  f (c + h) > f (c).
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2x % x 2 sin

1
x

, xú0

0 , x'0

f (x) ' x (x & 1)
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9. False.  Consider .  Then,  f  is defined for all real x and f ’

exists for all real x and f ’ (0) > 0, but f  is not strictly increasing on any open interval
which contains 0.

Section 7.6

1. Suppose to the contrary that there exists a k such that f (x) = x  - 3x + k has two distinct3

roots in [0,1], say x  and x  with 0 #  x  < x   # 1.  Then, by Rolle’s theorem we have that1 2 1 2

f ' (x) = 3x  - 3 has a root at some c in (x , x ) d (0,1).  But, the roots of f ' are ±1 which is2
1 2

a contradiction.

2. a)  f (x) = sin x on [0,].  Yes.  f  is continuous on [0,] and differentiable on (0,) and
f (0) = 0 = f ( ).

b) on [0,1].  Yes.  f  is continuous on [0,1] and differentiable on (0,1)
and f (0) = 0 = f (1).

c)  f (x) = sin 1/x on [-1/, 1/ ], x ú 0; f (0) = 0.  No.  f  is not differentiable at x = 0 and
hence not on (-1/, 1/ ).

d) f (x) = x  on [0,1].  No, f (0) ú f (1).2

3. For f (x) = (x - a)(b - x) we have f ' (x) =  a+b - 2x.  So, c = (a+b)/2 satifies f ' (c) = 0 and
c 0 (a,b).

Section 7.7

1. a)   f (x) = x/(x-1) on [0,2].  No. f  is not defined at x = 1 and hence cannot be continuous
or differentiable at x = 2.

b)   f (x) = x/(x-1) on [2,4].  Yes.  f  is continuous on [2,4] and differentiable on (2,4). 

satisfies the conclusion of the mean value theorem.

c)  f (x) = Ax + B on [a,b].  Yes.   f  is continuous on [a,b] and differentiable on (a,b). 
Any c 0 (a,b) satisfies the conclusion of the mean value theorem.

d)  f (x) = 1 - x  on [-1,1].  No.  f  is not differentiable at x= 0 and hence, not on (-1,1).2/ 3

2. a)  c  =  1/2 



f (x) & f (c)
x & c

' 0

b)  c = -  / 4

3. If f ’(x) and g’(x) exist for all x in [a,b], then both f  and g are both continuous on [a,b]. 
Furthermore, g’(x) ú 0 for all x in [a,b] implies that g(a) ú g(b) — otherwise, Rolle's
would be contradicted.  Finally, since g'(x) ú 0 for all x in [a,b], then we cannot have both
f ' (t) = g'(t) = 0 for any t in (a,b).

4. Suppose f ' (x) = 0 for all x in (a,b).  Let c be a specific (fixed) point in (a,b).  Then, for
any other point x in (a,b), x ú c, we have by the mean value theorem that 

 (***)

But, (***) implies that f (x) = f (c).  Therefore, f  is constant on (a,b).


