Solution Set #4

Section 7.4

1. From theorems 7.4B and 7.4C we have

$$\int_{0}^{1} (2x^{2} - 3x + 5) dx = 2 \int_{0}^{1} x^{2} dx - 3 \int_{0}^{1} x dx + 5 \int_{0}^{1} 1 dx$$

From problems 7.2.2 and 7.2.3 combined with 7.2.7 we have

$$\int_0^1 x \, dx = \lim_{n \to \infty} \frac{n(n+1)}{2n^2} = \frac{1}{2} \quad \text{and} \quad \int_0^1 x^2 \, dx = \lim_{n \to \infty} \frac{n(n+1)(2n+1)}{6n^3} = \frac{1}{3}$$

From class $\int_{a}^{b} c \, dx = (b-a) * c$ for any constant c. Hence,

$$\int_0^1 (2x^2 - 3x + 5) \, dx = \frac{2}{3} - \frac{3}{2} + 5 = 5\frac{5}{6}$$

To show that F is continuous at x in [a,b] requires showing that $\lim F(x+h) = F(x)$ 4. $h \rightarrow 0$ which is equivalent to showing

$$\lim_{h \to 0} |F(x+h) - F(x)| = 0. \quad (*)$$

To show (*), let $\varepsilon > 0$. Since f is continuous on [a,b], we have by theorem 6.6D that f is bounded on [a,b], say by M. Let $\delta = \varepsilon/M$. Claim that for $|h| < \delta$ that $|F(x+h) - F(x)| < \varepsilon$ ε , which will imply that (*) holds.

Verification of the claim: We have

$$|F(x+h) - F(x)| = |\int_{x}^{x+h} f(t) dt| \le |\int_{x}^{x+h} |f(t)| dt|$$

by theorems 7.4F (and 7.4G in the case where h < 0). But, then

$$\left|\int_{x}^{x+n}|f(t)|\,dt\,\right|\,\leq\,M\,|h|$$

and the claim follows.

If $0 \le x \le 1$, then $1 \le x+1 \le 2$ and subsequently, $1 \le \sqrt{1+x} \le \sqrt{2}$. Hence, 5. a) $x^2 \ge \frac{x^2}{\sqrt{1+x}} \ge \frac{x^2}{\sqrt{2}}.$

From a) and theorem 7.4E we have $\int_0^1 x^2 dx \ge \int_0^1 \frac{x^2}{\sqrt{1+x}} dx \ge \int_0^1 \frac{x^2}{\sqrt{2}} dx$. But, b)

then from the comments in problem 1 we have $\int_0^1 x^2 dx = \frac{1}{3}$. Hence,

$$\frac{1}{3} \ge \int_0^1 \frac{x^2}{\sqrt{1+x}} \, dx \ge \frac{1}{3\sqrt{2}}$$

- 7. If *f* is continuous at *c* in [a,b] and *f*(*c*) > 0, then there exists $\delta > 0$ such on the interval *J* = B(*c*, δ) \cap [a,b] we have *f*(x) > *f*(*c*)/2 > 0. Furthermore, note that $|J| \ge \delta > 0$. Let χ be the characteristic function of the interval *J* and let $g(x) = \frac{f(c)}{2}\chi(x)$. Then, on [a,b] we have *f*(x) ≥ *g*(x). Hence, by theorem 7.4E we have $\int_{a}^{b} f(x) dx \ge \int_{a}^{b} g(x) dx$. But, $\int_{a}^{b} g(x) dx = \frac{f(c)}{2} |J| > 0$.
- 8. Suppose to the contrary that *f* is not identically 0 on [a,b]. There, there exists a *c* in [a,b] such that at *c* we have f(c) > 0. Then, by problem 7 we have $\int_{a}^{b} f(x) dx > 0$, which contradicts the hypotheses of the problem.

Section 7.5

- 1. Suppose f is the constant function f(x) = c. Then, for any x in [a,b] we have that $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} + \lim_{h \to 0} \frac{c - c}{h} = 0.$
- 2. The hypothesis that f'(c) exists means that $\lim_{h \to 0} \frac{f(c+h) f(c)}{h}$ exists. But, then the limit theorems imply that $b \lim_{h \to 0} \frac{f(c+h) f(c)}{h} = \lim_{h \to 0} \frac{bf(c+h) bf(c)}{h}$. But, since g(x) = bf(x) on an interval containing c, we have that g'(c) exists and equals bf'(c).
- 5. a) Let m = -n. Then $x^n = 1/x^m$. If $x \neq 0$, then theorem 7.5C (quotient rule) implies that $(x^n)^{\prime} = (\frac{1}{x^m})^{\prime} = \frac{-mx^{m-1}}{x^{2m}} = \frac{-m}{x^{m+1}}$. But the latter term is nx^{n-1} .
- 7. Since f'(c) exists and since a < c < b, then the lemma on page 195 implies that there exists and interval $(0,\delta)$ so that for all $h \in (0,\delta)$ we can write

$$f(c + h) = f(c) + h F(h)$$
 (**)

where F is continuous at h = 0 and F(0) = f'(c) > 0.

Since *F* is continuous at h = 0 and since *F* (0) > 0, there exists an interval $(0,\delta_1)$ on which F(x) > 0. Wolog we may take $\delta_1 < \delta$. Then, for all $h \in (0,\delta_1)$ we have h F(h) > 0 and hence, from (**) f(c + h) > f(c).

9. False. Consider $f(x) = \begin{cases} 2x + x^2 \sin \frac{1}{x} , x \neq 0 \\ 0 , x = 0 \end{cases}$. Then, f is defined for all real x and f?

exists for all real x and f'(0) > 0, but f is not strictly increasing on any open interval which contains 0.

Section 7.6

- 1. Suppose to the contrary that there exists a k such that $f(x) = x^3 3x + k$ has two distinct roots in [0,1], say x_1 and x_2 with $0 \le x_1 < x_2 \le 1$. Then, by Rolle's theorem we have that $f'(x) = 3x^2 3$ has a root at some c in $(x_1, x_2) \subset (0,1)$. But, the roots of f' are ± 1 which is a contradiction.
- 2. a) $f(x) = \sin x$ on $[0,\pi]$. Yes. f is continuous on $[0,\pi]$ and differentiable on $(0,\pi)$ and $f(0) = 0 = f(\pi)$.

b) $f(x) = \sqrt{x}(x-1)$ on [0,1]. Yes. f is continuous on [0,1] and differentiable on (0,1) and f(0) = 0 = f(1).

c) $f(x) = \sin 1/x$ on $[-1/\pi, 1/\pi]$, $x \neq 0$; f(0) = 0. No. f is not differentiable at x = 0 and hence not on $(-1/\pi, 1/\pi)$.

d) $f(x) = x^2$ on [0,1]. No, $f(0) \neq f(1)$.

3. For f(x) = (x - a)(b - x) we have f'(x) = a+b-2x. So, c = (a+b)/2 satisfies f'(c) = 0 and $c \in (a,b)$.

Section 7.7

1. a) f(x) = x/(x-1) on [0,2]. No. *f* is not defined at x = 1 and hence cannot be continuous or differentiable at x = 2.

b) f(x) = x/(x-1) on [2,4]. Yes. f is continuous on [2,4] and differentiable on (2,4). c = $1 + \sqrt{3}$ satisfies the conclusion of the mean value theorem.

c) f(x) = Ax + B on [a,b]. Yes. f is continuous on [a,b] and differentiable on (a,b). Any $c \in (a,b)$ satisfies the conclusion of the mean value theorem.

d) $f(x) = 1 - x^{2/3}$ on [-1,1]. No. f is not differentiable at x = 0 and hence, not on (-1,1).

2. a) c = 1/2

b) $c = -\pi / 4$

- 3. If f'(x) and g'(x) exist for all x in [a,b], then both f and g are both continuous on [a,b]. Furthermore, $g'(x) \neq 0$ for all x in [a,b] implies that $g(a) \neq g(b)$ — otherwise, Rolle's would be contradicted. Finally, since $g'(x) \neq 0$ for all x in [a,b], then we cannot have both f'(t) = g'(t) = 0 for any t in (a,b).
- 4. Suppose f'(x) = 0 for all x in (a,b). Let c be a specific (fixed) point in (a,b). Then, for any other point x in (a,b), $x \neq c$, we have by the mean value theorem that

$$\frac{f(x) - f(c)}{x - c} = 0 \; (***)$$

But, (***) implies that f(x) = f(c). Therefore, f is constant on (a,b).