## Solution Set #3

## Section 7.1

2.

- Suppose that A \ B were a set of measure zero. Then, the union of two sets of measure 1. set,  $A \setminus B \cup B$  would again be a set of measure zero. But the union would be A which was given as not a set of measure zero.
- (a) Suppose that [a,b] could be covered by a finite union of intervals  $I_1, I_2, \ldots, I_n$  such that  $|I_k| = b_k - a_k$ , k = 1, 2, ..., n and the sum of the lengths  $\sum_{k=1}^{n} b_k - a_k < b$ -a. Wolog we may suppose that no interval  $I_k \subset I_j$  for  $k \neq j$  and that the intervals  $I_k$  are ordered by their left endpoints, i.e.,  $a_1 < a_2 < \dots < a_n$ . Furthermore, we may assume that no interval  $I_k \subset I_{k-1} \cup I_{k+1}, k = 2, 3, \ldots, n-1$ . Therefore, we must have that  $a \in I_1$ . If  $x \in I_1$ , then x-a <  $b_1$  -  $a_1$ . In particular,  $a_2 \in I_1$ . If  $x \in I_2$ , then x -  $a_2 < b_2$  -  $a_2$ . Therefore, combining the above two facts  $x - a < (x - a_2) + (a_2 - a_2) + (b_2 - a_2) + (b_1 - a_1) < b - a$ . Proceeding inductively we have that if  $x \in I_k$ , then  $x - a_k < b_k - a_k$  and

$$\begin{array}{lll} (*) & & x - a & <(x - a_k) + (a_k - a_{k-1}) + (a_{k-1} - a_{k-2}) + \ldots + (a_3 - a_2) + (a_2 - a) \\ & & <(b_k - a_k) + (b_{k-1} - a_{k-1}) + (b_{k-2} - a_{k-2}) + \ldots + (b_2 - a_2) + (b_1 - a_1) < b - a. \end{array}$$

Specifically, b must belong to one of the intervals since the union of the intervals covers [a,b]. But, then by (\*) we would have b - a < b - a.

(b) Suppose that [a,b] were of measure zero. Then, given any  $\varepsilon > 0$  (in particular,  $\varepsilon =$ (b - a)/2 ) there would exist a collection of intervals {  $I_{\alpha}$  },  $\alpha \in A,$  such that [a,b] could be covered by  $\bigcup_{\alpha \in A} I_{\alpha}$  and  $\sum_{\alpha \in A} |I_{\alpha}| < \epsilon$ . But since [a,b] is compact, then there would exist a

finite subcollection which would cover [a,b] for which the sum of the lengths would be even smaller. But, this latter assertion is impossible by part (a) of the problem.

- 3. This is a direct consequence of problems 1 and 2 above with  $A = \{a,b\}$  and  $B = \{a,b\}$ .
- 4. (a) Since the rationals are a countable set, then corollary 7.1C applies and asserts that the rationals are a set of measure zero.
  - (b) This is a direct consequence of problems 1 and 4(a) above with  $A = \mathbf{R}^1$  and  $B = \mathbf{O}$ , where **Q** is the set of rationals.
- False. Let f(x) = 0 on [0,1]. Let  $g(x) = \begin{cases} 0 & x \text{ is irrational} \\ 1 & x \text{ is rational} \end{cases}$ ,  $x \in [0,1]$ . Then f = g5. on [0,1] a.e., but g is not continuous anywhere on [0,1]

## Section 7.2

1. 
$$U[f,\sigma] = \frac{1}{3} \cdot \frac{1}{3} + \frac{2}{3} \cdot \frac{1}{3} + 1 \cdot \frac{1}{3} = \frac{2}{3}$$
$$L[f,\sigma] = 0 \cdot \frac{1}{3} + \frac{1}{3} \cdot \frac{1}{3} + \frac{2}{3} \cdot \frac{1}{3} = \frac{1}{3}$$

2. 
$$U[f,\sigma] = \frac{1}{n} \cdot \frac{1}{n} + \frac{2}{n} \cdot \frac{1}{n} + \dots + \frac{n}{n} \cdot \frac{1}{n} = \frac{1}{n^2} \sum_{k=1}^{n} k = \frac{\frac{n(n+1)}{2}}{n^2}$$
$$\lim_{n \to \infty} U[f,\sigma] = \frac{1}{2}$$

- 6. (a) Since f is continuous on [a,b] which is compact, then by theorem 6.8C f is uniformly continuous on [a,b].
  - (b) Since f is uniformly continuous on [a,b], then by the definition of uniform continuity given  $\varepsilon > 0$  there exists a  $\delta > 0$  such that

$$|f(x) - f(y)| < \frac{\varepsilon}{b - a}$$
 whenever  $|x - y| < \delta$ .

Choose  $n \geq [[\frac{b-a}{\delta}]] + 1$  and let  $\sigma$  be the subdivision of [a,b] given by  $\sigma = \{a, a+1/n, a+2/n, \ldots, a+(n-1)/n, b\}$ . Then, each component interval  $I_k$  satisfies  $|I_k| = 1/n$ . Hence, for any  $x,y \in I_k$  we have  $|x-y| < \delta$  and by (b) we have  $|f(x)-f(y)| < \epsilon/(b-a)$ . Hence,

$$M[f, I_k]$$
 -  $m[f, I_k] < \epsilon / (b-a)$ . (\*)

(d) Since (\*) holds for each k, then if we sum (\*\*) over k we have

$$U[f,\sigma] - L[f,\sigma] = \sum_{k=1}^{n} (M[f,I_{k}] - m[f,I_{k}]) |I_{k}| < \sum_{k=1}^{n} \frac{\varepsilon}{b-a} |I_{k}| = \varepsilon \quad (**)$$

- (e) Since for each  $\varepsilon > 0$  given in (b) there exists a subdivision  $\sigma$  given in (c) so that (\*\*) holds, then by theorem 7.2G we have the  $f \in \mathcal{R}$  [a,b].
- 7. (a) Consider the component interval  $I_k$ . Since f is continuous on  $I_k$ , then by theorem 6.6F we have f obtains a maximum on  $I_k$ , i.e., there exists  $x_{max} \in I_k$  such that  $M[f, I_k] = f(x_{max})$ , and we also have that f obtains a minimum on  $I_k$ , i.e., there exists  $x_{min} \in I_k$  such that  $m[f, I_k] = f(x_{min})$ . Hence, for any  $x_k^* \in I_k$  we must have  $m[f, I_k] \leq f(x_k^*) \leq M[f, I_k]$  (\*)

If we multiply (\*) by  $|I_k|$  and sum over k we obtain

$$L[f,\sigma_n] \leq \frac{1}{n} \sum_{k=1}^n f(x_k^*) \leq U[f,\sigma_n].$$
 (\*\*)

(b) Let  $\epsilon > 0$ . By the construction in problem 6 above, if n is choose sufficiently large then  $\sigma_n$  is the partition described in 6(c) and from 6(d) we have

 $U[f,\sigma_n] - L[f,\sigma_n] < \varepsilon$ . Since  $L[f,\sigma_n] < \int_a^b f$  we have that  $U[f,\sigma_n] - \int_a^b f < \varepsilon$ . Since, on the other hand we always have  $0 \le U[f,\sigma_n] - \int_a^b f$ . Then, we can conclude that  $\lim_{n \to \infty} U[f,\sigma_n] = \int_a^b f$ . Similarly, since  $\int_a^b f < U[f,\sigma_n]$  we have that  $\int_a^b f - L[f,\sigma_n] < \varepsilon$ . Likewise, we always have  $0 \le \int_a^b f - L[f,\sigma_n]$ . Hence,  $\lim_{n \to \infty} L[f,\sigma_n] = \int_a^b f$ . But, since both  $\lim_{n \to \infty} U[f,\sigma_n] = \int_a^b f$  and  $\lim_{n \to \infty} L[f,\sigma_n] = \int_a^b f$ , then (\*\*) and the sandwich (squeeze) theorem imply that  $\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n f(x_k^*) = \int_a^b f$ .

- 9. Note: by problem 7, for f continuous on [a,b] we have  $\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} f(x_k^*) = \int_a^b f(x_k^*) dx_k^* dx_k$ 
  - (a) Choose  $f(x) = x^2$ . Then, by problem 7, the indicated limit equals  $\int_a^b f$  for the interval [0,1], which equals (from Calc I) 1/3.
  - (b) Choose  $f(x) = \sin \pi x$ . Then, by problem 7, the indicated limit equals  $\int_a^b f$  for the interval [0,1], which equals (from Calc I)  $2/\pi$ .
  - (c) Choose  $f(x) = e^{3x}$  Then, by problem 7, the indicated limit equals  $\int_a^b f$  for the interval [0,1], which equals (from Calc I)  $(e^3 1)/3$ .

## Section 7.3

- 1. (a) Yes. f is continuous except on the set of points  $\{0, 1/10, 2/10, ... 1\}$  which is a finite set, and, hence, of measure zero.
  - (b) Yes. f is continuous except on the set  $\{0\}$ , which is a finite set, and, hence, of measure zero.
  - (c) Yes. f is continuous except on the set rationals which is a countable set, and, hence, of measure zero.
  - (d) No. f is then not continuous anywhere on [0,1].
- 2. (a)  $\omega[f,x] = 0$  for x not in  $\{0, 1/10, 2/10, ... 1\}$  and  $\omega[f,x] = 1$  for x in  $\{0, 1/10, 2/10, ... 1\}$ . If x is not in  $\{0, 1/10, 2/10, ... 1\}$  then there exists an open interval  $I_x$  which contains x and does not intersect  $\{0, 1/10, 2/10, ... 1\}$ . Hence, on  $I_x$  we have  $f(x) \equiv 0$ , which implies that  $\omega[f,I_x] = 0$ . Since  $\omega[f,x] \leq \omega[f,I_x]$ , then  $\omega[f,x] = 0$ .

If x is in  $\{0, 1/10, 2/10, ... 1\}$ , then for any open interval J which contains x we

- would have  $\omega[f,J] = 1$ . Hence,  $\omega[f,x] = 1$ .
- (b)  $\omega[f,x] = 0$  for x > 0 and  $\omega[f,0] = 8$ . If x is not 0, then f is continuous at x and hence,  $\omega[f,x] = 0$ . If x = 0, then on any open interval J which contains 0, we have that there exists an integer k such  $x_k = [(4k-1)\pi/2]^{-1} \in J$  which implies that  $f(x_k) = -1$ . Since, f(0) = 7, then  $\omega[f,J] = 8$ . Hence,  $\omega[f,0] = 8$ .
- 3. If  $f \in \mathcal{R}$  [a,b], then by theorem 7.3A f is continuous a.e. Let  $E = \{ x \in [a,b] : f \text{ is discontinuous at } x \}$ . Let  $E_1 \{ x \in [a,b] : |f| \text{ is discontinuous at } x \}$  Suppose that  $y \in [a,b] \setminus E$ . Then, by problem 5.1.4 we have that |f| is continuous at y also. Therefore, the  $E_1 \subset E$ . Hence,  $E_1$  is also a set of measure zero and  $|f| \in \mathcal{R}$  [a,b].
- 4. False. The example in problem 7.1.5 illustrates the non-validity of the claim.
- 5. True. Let  $E = \{ x \in [a,b] : f \text{ is discontinuous at } x \}$ . Then, E is a set of measure zero. Let  $E_1 = \{ x \in [a,b] : g \text{ is discontinuous at } x \}$ . Suppose f = g on [a,b] except for on a finite point set, say  $S = \{x_1, x_2, \ldots, x_n\}$ . Then  $E_1 \subset E \cup S$  because if  $y \in [a,b] \setminus (E \cup S)$ , then f is continuous at y and g agrees with f on a open interval  $I_y$  containing y which implies that g is also continuous at y. However,  $E \cup S$  is a set of measure zero since both E and S are sets of measure zero. Hence,  $E_1$  is a set of measure zero and by theroem 7.3A  $g \in \mathcal{R}$  [a,b].