
Solution Set #2

Section 6.4

2. a. Consider the sequence with terms given by s  = 1/n.  {s } is Cauchy in (0,1), butn n

does not converge in (0,1).  Hence, (0,1) is not complete.

b. Let {s } be any Cauchy sequence in (0,1) with the discrete metric d.  Since {s } isn n

Cauchy, then for g = 1/2 there exists N such for n, m $ N we have d(s ,s ) < 1/2. n m

But d(s ,s ) < 1/2 implies that d(s ,s ) = 0 which in turn implies that s  = s . n m n m n m

Hence for n $ N the terms s  are all constant, i.e., s  = s .  Therefore the sequencen n N

converges (to s ).  Since the sequence {s } was an arbitrary Cauchy sequence inN n

(0,1) with the discrete metric, we have (0,1) with the discrete metric is complete.

3. Let {p } be a Cauchy sequence in R , p  = <x ,y >.  In the verification of problem 4.3.2n n n n
2

that it was shown that (by the triangle inequality) that | x  - x | # | p  - p  |  (where then m n m

first absolute value is taken on points x  in R  and the second absolute value is taken onk
1

points p  in R ) and  | y  - y | # | p  - p  |  (where the first absolute value is taken onk n m n m
2

points y  in R  and the second absolute value is taken on points p  in R ). Hence, if {p } isk k n
1 2

Cauchy in R , then so are {x } and {y } in R .  But, R  is complete; therefore, the2 1 1
n n

sequences {x } and {y } both converge.  Hence, but the second part of problem 4.3.2, then n

sequence {p } converges.  Since the sequence {p } was an arbitrary Cauchy sequence inn n

R , we have R  is complete.2 2

5. Let x, y 0 (0,1/3].  Then |T(x) - T(y)| = |x  - y | = |(x-y)(x+y)| # (2/3)|x-y|.  Hence, using 2 2

= 2/3, we see that T is a contraction on (0,1/3].  A similar argument would show that T is
a contraction on [0,1/3] which is complete.  By theorem 6.4F there exists a unique fixed
point for T on [0,1/3].  0 satisfies the functional equation Tx = x on [0,1/3] so 0 is the
unique fixed point.  But 0 Ø (0,1/3], so T has no fixed point on (0,1/3].

7. Since M is totally bounded, by theorem 6.3H every sequence in M has a Cauchy
subsequence.  Since M is complete, each such Cauchy subsequence must be convergent
to a point in M.

Section 6.5

2. Let S = {x , x , . . . , x } be a finite subset of a metric space M.  Let {G },  0 A, be an1 2 n

open cover of S.  Then, for each x  choose an index k 0 A, such that x  0 G .  Then byk k k

construction {G } is a finite subcover of S.  Since {G } was arbitrary, by theorem 6.5H Mk

is compact.

3. a. Let S be a compact subset of R .  By theorem 6.5D, S must be closed.  Suppose S2

were not bounded.  Then, we could find a sequence {s } in S such that for each nn

we would have |s | > n.  But, this sequence could have no convergent subsequence. n

That would contradict theorem 6.5B; hence, S must be bounded.
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b. Suppose we have a closed bounded subset of R .   By problem 6.3.1 any bounded2

subset of R  is totally bounded.  By problem 6.4.3 R  is complete and by theorem2 2

6.4C any closed subset of R  is also complete.  Hence, by definition 6.5A any2

closed bounded subset of R  is compact.2

4. Let A and B be compact subsets of R .  By theorem 6.5D both A and B are closed subsets1

of R .  By problem 5.5.12 A×B is a closed subset of R .  By definition 6.5A both A and B1 2

are totally bounded, which implies, in particular, that they are bounded.  The triangle
inequality implies that if A and B are bounded, then A×B is also bounded.  Hence, by
problem 6.5.3, we have A×B is compact.

6. Suppose to the contrary there existed a finite subcover of (0,1), say . 

Then, since {x , x , . . ., x } is a finite set there exists a minimum for it say x .  But, then1 2 n min

for for 0 < y < x /2 we would have that y Ø  for any k, contradicting the fact thatmin

was to have been a finite subcover of (0,1).

Section 6.6

2. Clearly, for any x 0 R  we have , so f  attains a maximum value (at x1

= 0).  On the other hand, for any x 0 R  we have if y $ |x| then , so that f 1

does not attain a minimum value.

3. Let f (x) = arctan x.  Then, f  is bounded and strictly increasing on R , which implies that f 1

attains neither a maximum nor a minimum on R .1

4. Let f (x) = x on [0,1).  Then at x=0, f  attains a minimum value, but for any x in [0,1) for y
= (x+1)/2 we have y > x and hence f (y) > f (x).

5. By theorem 6.6F there exists a x  such that f  attains a maximum on M at x  and theremax max

exists a x  such that f  attains a minimum on M at x    Let f (x ) = d and f (x ) = c. min min max min

By theorem 6.2D the range of f  is connected, since the domain M is connected by
hypothesis.  Since range of f  is connected and contains c and d, then the interval [c,d]
belongs to the range of f .  Hence, every value e between c and d belongs to the range of f.

Section 6.7

1. a. Yes, f  is continuous because f  sends nearby points on the flat map to nearby
points on the globe.

b. No, f  is not continuous, because the globe would have to be cut along someline-1

to map it to a flat map and points nearby to each other but on opposite sides of the
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line would not be sent to image points nearby each other on the flat map.

2. Let n be a fixed positive integer.  From results last semester f (x) = x  is continuous on R . n 1

Let N > 0 be fixed.  Then, f  is continuous on the restricted domain [0,N] and one-to-one
on [0,N].  Since [0,N] is compact, then by theorem 6.7B we have f  is continuous on its-1

domain [0,N ].  Since, N was arbitrary, we can conclude that  f  is continuous on [0,4).n -1

Section 6.8

2. If the absolute value of the secant line for arbitrary points x and y in [a,b] is bounded by

1, then we have that for arbitrary x and y in [a,b].  But, that implies that

| f (x) - f (y)| # | x - y| for arbitrary x and y in [a,b].  Given g > 0, then choose, for the
requirement of uniform continuity,  = g.  Then |x - y| <  will imply that | f (x) - f (y)| < g
and uniform continuity thus holds.

3. a. Yes.  f  is continuous on [0,1] and [0,1] is compact so theorem 6.8C applies.
b. No.  f  is continuous on [0,4), but [0,4) is not compact, so theorem 6.8C does not

apply.  Furthermore, for g = 1, we can see that no  can be found so that | f (x) -
f (y)| < 1 for |x - y| <  for all x and y in [0,4).  Specfically, choose x  so that (x  +0 0

)  > x  + 2. Then on the interval [x  ,x + ] the function x  which change by 2. 3 3 3
0 0 0

Hence, there will exist a, b in the interval [x  ,x + ] so that (| a - b | <   and ) | a  -0 0
3

b  | $ 1.3

c. No. f  is continuous on [0,4), but [0,4) is not compact, so theorem 6.8C does not
apply.  Futhermore, Furthermore, for g = 1, we can see that no  can be found so
that | f (x) - f (y)| < 1 for |x - y| <  for all x and y in [0,4).  Specfically, choose x0

so that (x  + )  > x  + 2 .  Then, on the interval [x  ,x + ] the function sin x0 0 0 0
2 2 2

which go through a full period.  Hence, there will exist a, b in the interval [x0

,x + ] so that (| a - b | <   and )  | sin a  - sin b  | $ 1.0
2 2

d. Yes.  f  is continuous on [0,4).  [0,4) is not compact so theorem 6.8C does not
apply.  But, on [0,4)  the absolute value of the secant line for arbitrary points x
and y in [0,4) is bounded in absolute value by 1.  Hence, an extension of problem
6.8.2 will give us that f  is uniformly continuous on [0,4).  

5. Let g > 0 be given.  Since , there exists a N so that for x $ N we must have

| f  (x)| < g/2.  Then, for arbitrary x, y $ N we have that | f (x) - f (y)| < g.  Similarly, there
exists M > 0 so that for arbitrary x, y # -M we have that | f (x) - f (y)| < g.  On the compact
interval [-M-1, N+1] theorem 6.8D implies f  is uniformly continuous, i.e., for this g there
exists a  (which we may suppose is less than 1) so that for x and y in [-M-1, N+1] with
| x - y | <  we have | f (x) - f (y)| < g.  We have now for any x and y in R  with | x - y | < 1

that  | f (x) - f (y)| < g.  Since g was arbitrary, f  is uniformly continuous on R .1

8. Let f  :  <M , > 6 <M ,  >  be uniformly continuous on M .  Let {x } be a Cauchy1 1 2 2 1 n

sequence in M .   Let g > 0 be given.  Then, there exists a  > 0 such that if x, y (in M )1 1



satisfy  (x,y) < , then (f (x), f (y)) < g.  Since  {x } is Cauchy, there exists a N such1 2 n

that n, m $ N implies that  (x  , x  ) < .  Therefore, for n, m $ N we have that (f (x  ),1 n m 2 n

f (x  )) < g.  Since g was arbitrary, the sequence {f (x )} is Cauchy.m n


