Solution Set #2

Section 6.4

2.

a Consider the sequence with terms given by s, = 1/n. {s} is Cauchy in (0,1), but
does not convergein (0,1). Hence, (0,1) is not complete.

b. Let {s,} beany Cauchy sequencein (0,1) with the discrete metricd. Since{s.} is
Cauchy, then for € = 1/2 there exists N such for n, m> N we have d(s,,s,) < 1/2.
But d(s,,s,) < /2 impliesthat d(s,,s,) = 0 which inturnimpliesthat s, = s,
Hencefor n > N theterms s, are all constant, i.e., s, = s,. Therefore the sequence
converges (to s,). Sincethe sequence{s,} was an arbitrary Cauchy sequence in
(0,1) with the discrete metric, we have (0,1) with the discrete metric is complete.

Let {p,} beaCauchy sequencein R?, p, = <x,,y,>. Inthe verification of problem 4.3.2
that it was shown that (by the triangle inequality) that | X, - X,,| < | P, - Pm | (Wherethe
first absolute value is taken on points x, in R* and the second absolute value is taken on
pointsp, inR? and |y, - Y.| < | P, - Py | (Wherethefirst absolute value is taken on
pointsy, in R* and the second absolute value is taken on points p, in R?). Hence, if {p,} is
Cauchy in R? then so are{x,} and {y.} in R’ But, R is complete; therefore, the
sequences {x,} and{y,} both converge. Hence, but the second part of problem 4.3.2, the
sequence {p,} converges. Since the sequence {p,} was an arbitrary Cauchy sequence in
R?, we have R? is complete.

Let x,y e (0,1/3]. Then|T(x) - T(y)| = [X* - ¥?| = [(x-y)(x+Y)]| < (2/3)[x-y|. Hence, using a
= 2/3, we seethat T isacontraction on (0,1/3]. A similar argument would show that T is
a contraction on [0,1/3] which is complete. By theorem 6.4F there exists a unique fixed
point for T on [0,1/3]. O satisfies the functional equation Tx = x on [0,1/3] so O isthe
unique fixed point. But O ¢ (0,1/3], so T has no fixed point on (0,1/3].

Since M is totally bounded, by theorem 6.3H every sequence in M has a Cauchy
subsequence. Since M is complete, each such Cauchy subsequence must be convergent
to apoint in M.

Section 6.5

2.

Let S={x;, X,, ..., X} beafinite subset of ametric space M. Let {G,},a € A, bean
open cover of S. Then, for each x, choose an index k € A, such that x, € G,. Then by
congtruction { G} isafinite subcover of S. Since {G_} was arbitrary, by theorem 6.5H M
is compact.

a Let S be acompact subset of R% By theorem 6.5D, S must be closed. Suppose S
were not bounded. Then, we could find a sequence{s,} in S such that for each n
we would have |s,| > n. But, this sequence could have no convergent subseguence.
That would contradict theorem 6.5B; hence, S must be bounded.



b. Suppose we have a closed bounded subset of R?. By problem 6.3.1 any bounded
subset of R? istotally bounded. By problem 6.4.3 R? is complete and by theorem
6.4C any closed subset of R? isalso complete. Hence, by definition 6.5A any
closed bounded subset of R? is compact.

4, Let A and B be compact subsets of RY. By theorem 6.5D both A and B are closed subsets
of R*. By problem 5.5.12 AxB is a closed subseRaf By definition 6.5A both A and B
are totally bounded, which implies, in particular, that they are bounded. The triangle
inequality implies that if A and B are bounded, then AxB is also bounded. Hence, by
problem 6.5.3, we have AxB is compact.

6. Suppose to the contrary there existed a finite subcover of (0,]{),I)§1a5§2, ol }
Then, since {x, X, . . .,X } is a finite set there exists a minimum for it Say x . But, then
for for 0 <y < x,,/2 we would have that&ylXk for any k, contradicting the fact that
{ le, IXZ, ..., 1, }was to have been a finite subcover of (0,1).

Section 6.6

2. Clearly, for any x R* we havel = 1 > 1 , S attains a maximum value (at x

1+02  1+x?
= 0). On the other hand, for ang»R* we have if y> |x| then 1 < 1 , SO thdt
1+y2  1+x2

does not attain a minimum value.

3. Letf (x) = arctan x. Therf, is bounded and strictly increasing Rh which implies thaf
attains neither a maximum nor a minimumRn

4, Letf (x) =xon[0,1). Then at x=0, attains a minimum value, but for any x in [0,1) for y
= (x+1)/2 we have y > x and hentgy) >f (x).

5. By theorem 6.6F there exists,a,.x such thattains a maximum on M atx and there

exists a X;,, such thadt attains a minimumon M at;x  LEB(X,,) = d andf (x,,) = C.

By theorem 6.2D the range Pfis connected, since the domain M is connected by
hypothesis. Since rangefois connected and contains ¢ and d, then the interval [c,d]
belongs to the range 6f Hence, every value e between ¢ and d belongs to the rahge of

Section 6.7
1. a. Yesf is continuous becausesends nearby points on the flat map to nearby
points on the globe.
b. No,f *is not continuous, because the globe would have to be cut along someline

to map it to a flat map and points nearby to each other but on opposite sides of the



line would not be sent to image points nearby each other on the flat map.

Let n be afixed positive integer. From results last semester f (x) = x" is continuous on R*.
Let N > 0 befixed. Then, f iscontinuous on the restricted domain [0,N] and one-to-one
on [O,N]. Since[0,N] is compact, then by theorem 6.7B we have f * is continuous on its
domain [O,N"]. Since, N was arhitrary, we can conclude that f ™ is continuous on [0,x).

Section 6.8

2.

If the absolute value of the secant line for arbitrary points x and y in [a,b] is bounded by

1, then we have that w < 1for arbitrary x and y in [a,b]. But, that implies that
X-y

| f(X)-f(y)]<|x-y|forarbitrary x andyin[ab]. Givene >0, then choose, for the

requirement of uniform continuity, & =€. Then |x - y| <& will imply that | f (x) - f (y)| <e

and uniform continuity thus holds.

a Yes. f iscontinuouson [0,1] and [0,1] is compact so theorem 6.8C applies.

b. No. f iscontinuouson [0,e), but [0,») isnot compact, so theorem 6.8C does not
apply. Furthermore, for € = 1, we can see that no & can be found so that | f (X) -
f(y)|<1for|x-y|<éforalxandyin[0,). Specficaly, choosex, so that (x, +
8)% > x,* + 2. Then on the interval [x, ,x,+8] the function x* which change by 2.
Hence, there will exist g, bintheinterval [x, ,X,+8] sothat (ja-b|<$é and) | & -
b*|> 1.

C. No. f iscontinuous on [0,~), but [0,s) is not compact, so theorem 6.8C does not
apply. Futhermore, Furthermore, for € = 1, we can see that no 6 can be found so
that | f (x) - f (y)]<1lfor|x-y|<éforalxandyin[0,). Specficaly, choosex,
o that (X, +8)* > X,> + 2n. Then, on theinterval [x, ,X;+8] the function sin x?
which go through a full period. Hence, there will exist a, b in the interval [x,

X 48] sothat (ja-b|<$é and) |sn&-sinb?|> 1.

d. Yes. f iscontinuous on [0,»). [0,~) ishot compact so theorem 6.8C does not
apply. But, on[0,) the absolute value of the secant line for arbitrary points x
andy in [0,) is bounded in absolute value by 1. Hence, an extension of problem
6.8.2 will give usthat f is uniformly continuous on [0,).

Let € > 0begiven. Since limf(x) = 0, thereexistsaN so that for x > N we must have

Xoro
|f (X)| <el2. Then, for arbitrary X, y > N we havethat | f (X) - f (y)| <e. Similarly, there
exists M > 0 so that for arbitrary x, y < -M we havethat | f (X) - f (y)| <e. On the compact
interval [-M-1, N+1] theorem 6.8D impliesf isuniformly continuous, i.e., for thise there
existsad (which we may supposeislessthan 1) so that for x and y in [-M-1, N+1] with
|x-y|<&wehave|f(x)-f(y)<e. Wehavenow foranyxandyinR*with|x-y|<$
that |f (X) - f (y)]<e. Sincee was arbitrary, f is uniformly continuous on R™.

Letf : <My, p;> -~ <M,, p, > be uniformly continuouson M,. Let {x,} beaCauchy
sequencein M;. Lete > 0begiven. Then, thereexistsad > 0 suchthat if x, y (in M,)



satisfy p; (X,y) <6, then p,(f (X), f (y)) <e. Since {x,} isCauchy, there existsa N such
that n, m > N impliesthat p, (x,, X,,) <6. Therefore, for n, m > N we have that p,(f (X, ),
f (X, )) <e. Since e was arbitrary, the sequence {f (x,)} is Cauchy.



