Solution Set #10

Section10.4

- 1. Let $\varepsilon = 1$ (any number less than 2). For any $\delta > 0$ there exists *N* such that $\pi/N < \delta$. Consequently for x = 0 and $y = \pi/N$ we will have $|f_N(x) - f_N(y)| = 2 > \varepsilon$ and $|x - y| < \delta$.
- 2. It suffices to show that the sequence $\{\varphi_n\}$ is equicontinuous. Let $\varepsilon > 0$. Claim we can choose $\delta = \varepsilon/M$ to verify the condition for equicontinuity. Specifically, for x, y in [a,b] from the mean value theorem we have $|\varphi_n(x) \varphi_n(y)| = |\varphi'(c)| |x y|$ for some c between x and y. But, then by hypothesis $|\varphi'(c)| \le M$. If $|x y| < \delta$, then we have $|\varphi_n(x) \varphi_n(y)| < \varepsilon$.
- 4. Let $f_n(x) \equiv n$ on [0,1]. Then, $\{f_n\}$ is clearly equicontinuous, but $\{f_n\}$ has no convergent subsequence.

Section 11.1

1. Let $G_1 = \bigcup_{n \in A} I_n$ and $G_2 = \bigcup_{m \in B} J_m$ where each indexing set A and B is either finite or countable and the I_n and J_m are open intervals and the intervals $\{I_n\}$ are pariwise disjoint and the intervals $\{J_m\}$ are pariwise disjoint. For each m = 1, 2, 3, ... let $N_m = \{n \in A: I_n \subset J_m\}$. Then, each $n \in A$ belongs to some N_m for some $m \in B$. Since the $\{I_n\}$ are pairwise disjoint, then we have

$$|\bigcup_{n \in N_m} I_n| = \sum_{n \in N_m} |I_n| \le |J_m| \quad (*)$$

When we sum (*) over the $m \in B$ we obtain on the right side that $\sum_{m \in B} |J_m| = |G_2|$. On the other hand, when we sum (*) over the $m \in B$ we obtain on the left side that $\sum_{m \in B} |\bigcup_{n \in N_m} I_n| = |G_1|$ since every I_n belongs to a unique J_m . Hence, we have $|G_1| \leq |G_2|$.

2. Let χ_j be the characteristic function of I_j for j = 1, 2, ..., k. Let χ be the characteristic function of $I_1 \cup I_2 \cup ... \cup I_k$. Then for each x in [a,b], we have that

$$\chi(\mathbf{x}) \leq \chi_1(\mathbf{x}) + \chi_2(\mathbf{x}) + \ldots + \chi_k(\mathbf{x})$$

Clearly, each $\chi_j \in \mathcal{R}$ [a,b]. Since χ is a finite sum of elements in \mathcal{R} [a,b], then $\chi \in \mathcal{R}$ [a,b]. Hence, by Theorem 7.4E $\int_a^b \chi \leq \int_a^b \chi_1 + \chi_2 + \dots + \chi_k$. But, then $\int_a^b \chi = |I_1 \cup I_2 \cup \dots \cup I_k|$ and $\int_a^b \chi_1 + \chi_2 + \dots + \chi_k = \int_a^b \chi_1 + \int_a^b \chi_2 + \dots + \int_a^b \chi_k = |I_1| + |I_2| + \dots + |I_k|$

- 3. True. If *G* is open and non-empty, then there exists $x \in G$ and hence there exist an open subinterval (c,d) which contains x and for which (c,d) $\subset G$. That would imply that $|G| \ge d c > 0$. Hence, $G = \emptyset$.
- 4. False. Let $F = \{x\}$, where $x \in [a,b]$.
- 5. By paragraph 3 on page 305, the complement of the Cantor set (in [0,1]) is a union of disjoint open intervals whose lengths sum to 1. Hence, the length of the Cantor sets is |[0,1]| 1 = 0.

Section 11.2

- 2. Let $\varepsilon > 0$. Then $G_1 = (c \varepsilon/4, d)$ is an open set which contains [c,d). Also, $G_2 = [a,c) \cup (d \varepsilon/4, b]$ is an open set which contains $[a,b] \setminus [c,d)$. But, from the construction we have that $|G_1 \cap G_2| = \varepsilon/2 < \varepsilon$. Hence, by Theorem 11.2F we have [c,d) is measurable.
- 3. By Theorem 11.2C $0 \le \underline{m}E \le \overline{m}E$. If $\overline{m}E = 0$, then we have $0 \le \underline{m}E \le \overline{m}E \le 0$, which implies that the outer measure and the inner measure of *E* are equal to each other and each equal to 0.