Answer the problems on separate paper. You do <u>not</u> need to rewrite the problem statements on your answer sheets. Do your own work. Show all relevant steps which lead to your solutions. <u>Retain</u> this question sheet for your records.

Part I. Do three (3) of the following:

- 1. Using the definition of the derivative, determine where $x^2 + iy^2$ is differentiable.
- 2. Find the derivative of $w = \frac{(z+2)^2}{z^2+2i}$ (simplify).
- 3. Where is $f(z) = \frac{iz^2 + 2z}{z^3 + 2z}$ not analytic?
- 4. Determine whether the following statements are True or False. (Respond only with T or F)
 - a. if f(z) is entire, then $f(z^3)$ is entire
 - b. if f(z) and g(z) are entire, then f(g(z)) is entire
 - c. if f(z) is entire, then $f(\frac{1}{z})$ is entire
 - d. if f(z) and g(z) are entire, then $\frac{f(z)}{g^2(z)+1}$ is entire

Part II. Do two (2) of the following:

- 5. Determine where $f(z) = \cos x \sinh y i \sin x \cosh y$ is analytic. (Here z = x + iy.)
- 6. Let $f(z) = \cos 2z 2\cos^2 z$. Show that f is constant.
- 7. Let u = 3x y 2xy. Show that u is harmonic on \mathbb{C} and find a harmonic conjugate for u on \mathbb{C} .

Part IV. Do one (1) of the following:

9. Let
$$p(z) = z^4 - 8z^2 + 9z - 2$$
. Write p in factored form (as the product of linear factors).

10. Let
$$r(z) = \frac{z^2 - 3z - 1}{(z+1)^2(z-2)}$$
. Find a partial fraction expansion for r .

Part V. Do four (4) of the following:

- 11. Write $\sin(2i-4)$ in a+bi form.
- 12. Find the derivative of $w = \frac{\sinh z + \cosh z}{\sin z + \cos z}$
- 13. Find all solutions of $e^{4z} = i$.
- 14. Determine the domain of analyticity of Log(z-i) + Log(z+i).
- 15. Determine the domain of analyticity of $Log(z^2 + 1)$.
- 16. Find all values of 2^{p-i} .
- 17. Find the principal value of $(1+i)^{1-i}$.

Part VI. Do four (4) of the following:

- 18. Find an admissible parametrization for the arc of the circle |z-3i|=4 which starts at 3i+4 and travels in a clockwise direction to -i.
- 19. Find the length of the contour Γ given by the parametrization $z(t) = 3e^{(1-i)t}$, $-\mathbf{p} \le t \le \mathbf{p}$.
- 20. Evaluate the integral $\int_{-2}^{0} (1+i)\sin(it)dt$
- Evaluate the contour integral $\int_{\Gamma}^{-} z dz$ where Γ is the contour that consists of the straight line segment from 0 to 1+ *i* followed by the straight line segment from 1+ *i* to 2.
- 22. Evaluate the contour integral $\int_{\Gamma}^{-2} dz$ where Γ is the contour that consists of the arc of the unit circle which

goes from 1 to -1 in the counterclockwise direction.