Exam III
Review

On this review sheet there are 16 definitions listed. You will be asked to state 5 of the 16 listed definitions (15% of the exam).

On this review sheet there are 4 theorems (some of which have multiple parts) listed with an indication that you should know how to prove them. You will be asked to prove one part of one of the 4 listed theorems (15% of the exam).

On this review sheet there is a reference to providing Examples of Rings, Integral Domains and Fields. 1 of the problems on the exam will ask you to provide Examples of Rings, Integral Domains and Fields with specified conditions, which are different from the specific examples listed in Figure 1 page 207 (10% of the exam).

<table>
<thead>
<tr>
<th>Section</th>
<th>Topics</th>
<th>Listed Definitions / Exam Prototype Problems</th>
</tr>
</thead>
</table>
| 2.2 | Definition of a group homomorphism
Definition of the kernel of a homorphism
Prop. 2.2.15 Basic homomorphisms properties
Prop. 2.2.16 & 2.2.17 (Proofs)
Definition of an isomorphism
Conditions to verify groups are isomorphic
Prop. 2.2.23 Consequences of isomorphism | Definitions
2.2.2, 2.2.11, 2.2.18
Problems, Page 80
2, 8, 20, 24, 25, 26, 35, 41 |
| 2.3 | Definition of a normal subgroup
Prop. 2.3.3/2.3.5
Theorem 2.3.10 | Definitions
2.3.4
Problems, Page 92
1, 3, 4, 13 |
| 2.4 | Theorem 2.4.3 Group of cosets
Definition 2.4.4 Quotient Group
Prop. 2.4.9 Inherited Properties of Quotient Group
Theorem 2.4.15 First Isomorphism Theorem
Prop. 2.4.18
Theorem 2.4.19
Commutative Diagrams
Cauchy’s Theorem for Abelian Groups | Definitions
2.4.4
Problems, Page 100
1-4, 7-9, 13 |
| 3.1 | Theorem 3.1.4 Product Group
Definition 3.1.5 Direct Product Group
Proposition 3.1.8 | |
| 3.2 | Theorem 3.2.3 Order of an element of a direct product group
Theorem 3.2.8 $\mathbb{Z}_n \times \mathbb{Z}_m$ | |
<table>
<thead>
<tr>
<th>Section</th>
<th>Topics</th>
<th>Listed Definitions / Exam Prototype Problems</th>
</tr>
</thead>
</table>
| 6.1 | Definition of a ring
Prop. 6.1.8 Multiplication Facts for Rings (Proofs)
Definition 6.1.9
Definition of subring
Theorem 6.1.13 Conditions to be a subring | Definitions
6.1.2, 6.1.9, 6.1.12
Problems, Page 197
1-6, 11, 13, 15 |
| 6.2 | Definition of a zero divisor
Theorem 6.2.4 Zero divisors in \mathbb{Z}_n
Corollary 6.2.5 \mathbb{Z}_p
Cancellation Laws
Theorem 6.2.7 Equivalence of Cancellation Laws and Non-existence of Zero Divisors (Proofs)
Definition of Integral Domain
Definition of subdomain
Prop. 6.2.11 Conditions to be a subdomain | Definitions
6.2.2, 6.2.8, 6.2.10
Problems, Page 201
1-7, 8, 9, 13, 14, 16 |
| 6.3 | Definition of unit
Theorem 6.3.5
Theorem 6.3.6
Definition of a field
Theorem 6.3.14 Every finite integral domain is a field
Coro. 6.3.15
Definition of a subfield
Prop. 6.3.17 Conditions to be a subfield
Definition of a division ring
Definition of the characteristic of a ring | Definitions
6.3.3, 6.3.11, 6.3.16, 6.3.21, 6.3.24
Problems, Page 208
1-8, 16-22, 23, 24-26
Examples of rings, integral domains, fields (see Figure 1 page 207) |