Answer the problems on separate paper. You do <u>not</u> need to rewrite the problem statements on your answer sheets. Do your own work. Show all relevant steps which lead to your solutions. For no question is True/Yes or False/No by itself sufficient as the answer. <u>Retain</u> this question sheet for your records.

1. (12 pts) Complete each of the following statements:

- a. Let $\alpha : S \to T$. α is onto if and only if
- b. Let $\alpha : S \to T$. α is invertible if and only if
- c. Let S be a non-empty set and * an operation on S. $e \in S$ is an identity element for * if and only if
- d. Let (G,*) be a group. A subset H of G is a subgroup of G if and only if

2. (12 pts) Consider the following sets S and equations, each of which defines a rule * for S. In each case, determine whether * defines an operation on S. If * does not define an operation on S, state why not.

a.
$$S = \left\{ \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} \middle| a, b, c \in \mathbb{Z} \right\}, \text{ is matrix multiplication}$$

b.
$$S = \left\{ \begin{bmatrix} a & b \\ c & 0 \end{bmatrix} \middle| a, b, c \in \mathbb{Z} \right\}, \text{ is matrix multiplication}$$

3. (12 pts) Consider the following equation, which defines an operation * on \mathbb{Z} : m*n = m + n + mn

- a. Determine if * is associative. If not, state why not.
- b. Determine if * has an identity. If not, state why not.
- c. Determine if * is commutative. If not, state why not.

4. (12 pts) Complete the following Cayley table so that $G = \{a, b, c, d\}$ with * is a commutative group:

*	а	b	с	d
а		d		
b				a
c	а			
d				

5. (18 pts) Consider the following sets G with associative operations *. In each case, determine whether (G, *) is a group. If (G, *) is not a group, state why it is not.

- a. $G = \{0, 1, 2, 3, 4, \dots\}, *$ is addition of integers
- b. $G = \mathbb{Q} \setminus \{0\}$, i.e., *G* is the set of non-zero rational numbers, * is multiplication of rational numbers
- c. $G = M(\mathbb{Z})$, i.e., G is the set of mappings from \mathbb{Z} to \mathbb{Z} , * is addition of functions
- 6. (12 pts) Write each of the following as a single cycle or as a product of disjoint cycles:

a.
$$\begin{pmatrix} 123456\\ 356124 \end{pmatrix}$$

b. $(1 \ 3 \ 2 \ 6)(2 \ 5 \ 1)(3 \ 1 \ 7 \ 2)$
c. $(2 \ 5 \ 4 \ 1)^{-1}(1 \ 3 \ 5 \ 2)(1 \ 4 \ 3)$

7. (12 pts) It is known that \mathbb{R}^2 with component-wise addition (i.e.,

(a,b) + (c,d) = (a+c,b+d) forms a group. Show that the subset H =

 $\{(x,y)|x=y, x,y\in\mathbb{R}\}$ is a subgroup of \mathbb{R}^2 .

8. (12 pts) Identify the symmetry group of the figure to the right, i.e., construct a list (or a table) which identifies each of the elements which belong to the symmetry group of the figure. The figure consists of a square centered at the origin minus 4 slits of equal length on the diagonals and 2 slits of equal length on the *x*-axis.

Also, identify which elements in the symmetry group of the figure are self-inversive, i.e., which elements in the symmetry group of the figure are their own inverses.

