Answer the problems on separate paper. You do <u>not</u> need to rewrite the problem statements on your answer sheets. Do your own work. Show all relevant steps which lead to your solutions. <u>Retain</u> this question sheet for your records.

- 1. a. (2 pts) Let G, H be groups and let $\theta : G \to H$ be a homomorphism. Complete the following statement: the kernel of θ is
 - b. (2 pts) Complete the following statement: an integral domain *D* is said to be an *ordered integral domain* if
- 2. (6 pts) Let \mathbb{R}^2 denote the set of ordered pairs of real numbers, where \mathbb{R}^2 is considered as a group with the usual component-wise addition. Let $a = \begin{bmatrix} -1 & 0 \\ 2 & 0 \end{bmatrix}$ and let $\lambda : \mathbb{R}^2 \to \mathbb{R}^2$ be given by $\lambda x = xa$. Prove that λ is a group homomorphism. Find $\ker \lambda$.
- 3. (6 pts) Let $P_{\mathbb{Z}}[x]$ denote the set of polynomials with integer coefficients, where $P_{\mathbb{Z}}[x]$ is considered as a group with the usual polynomial addition. Let $\lambda: P_{\mathbb{Z}}[x] \to P_{\mathbb{Z}}[x]$ be given by $\lambda(f) = f'$. Prove that λ is a group homomorphism. Find $\ker \lambda$.
- 4. (6 pts) Construct the Cayley table for the quotient group $\mathbb{Z}_{16}/<[4]>$.
- 5. (6 pts) In the ring $M(2,\mathbb{Z}_{12})$ compute $\begin{bmatrix} 7 & 3 \\ 2 & 10 \end{bmatrix} \oplus \begin{bmatrix} 8 & 4 \\ 2 & 6 \end{bmatrix} \odot \begin{bmatrix} 9 & 3 \\ 4 & 11 \end{bmatrix}$.
- 6. (6 pts) Prove that if R is a ring and if $a, b, c \in R$, then a + b = a + c implies b = c.
- 7. (6 pts) Prove that if R is a integral domain and if $a,b,c \in R$ and $a \ne 0$, then ab = ac implies b = c.
- 8. (6 pts) Identify all of the zero divisors of the ring $\mathbb{Z}_4 \times \mathbb{Z}_8$.

- 9. Let R be the ring $P_{\mathbb{Z}}[x]$ and consider the subset $S = P_{\mathbb{Z}}[x]$ of R consisting of polynomials with even coefficients and the subset $T = P_{\mathbb{Z}}[x]$ consisting of polynomials with odd coefficients.
 - a. (6 pts) Prove that S is a subring of R.
 - b. (3 pts) Prove that T is not a subring of R.
- 10. (6 pts) Prove that if R is a ring and if $a, b \in R$, then -(ab) = (-a)b.
- 11. (6 pts) Prove that if R and S are isomorphic rings and if R has no zero-divisors, then S has no zero divisors.
- 12. (4 pts) For each part provide an example of a ring which satisfies the condition or state that one does not exist. Note in part d. the subscript *p* denotes a prime. (No explanation is required for stating the example or the non-existence of such an example.)
 - a. A non-commutative integral domain
 - b. A commutative ring without a unity
 - c. A integral domain which is not a field other than \mathbb{Z}
 - d. A finite field other than \mathbb{Z}_{p}
- 13. (5 pts) List 5 ring properties which every ring isomorphic to \mathbb{Z} (ring isomorphism) must possess, which are not necessarily valid for every ring.
- 14. Write in the form a + bi, $a, b \in \mathbb{R}$

a. (4 pts)
$$\frac{2-i}{3+2i}$$

b. (4 pts)
$$(-2+2i)^8$$

- 15. Let $U_{\rm 6}$ denote the set of all complex 6th roots of unity.
 - a. (4 pts) Determine \boldsymbol{U}_{6} , i.e., identify all of the elements of \boldsymbol{U}_{6} .
 - b. (4 pts) Represent the elements of $\,U_{\,6}$ graphically, i.e., plot them in $\,\mathbb{C}$.
 - c. (4 pts) For each element of $U_{\rm 6}$ identify its multiplicative inverse.
 - d. (4 pts) Let V_6 denote the (unique) subgroup of U_6 of order 3. Determine V_6 .