Show your work for each problem. You do <u>not</u> need to rewrite the statements of the problems on your answer sheets.

- 1. Let $(1\ 2\ 4) \in S_4$. (a) Find $|<(1\ 2\ 4)>|$. (b) Find $[S_4:<(1\ 2\ 4)>]$. (c) Find $<(1\ 2\ 4)>(1\ 3\ 2)$.
- 2. Let *G* be a finite group and let $a,b \in G$. Prove $o(a^{-1}ba) = o(b)$.
- 3. Construct a complete subgroup lattice for \mathbf{Z}_{75} .
- 4. Prove $(\mathbf{Z}_4, \oplus) \approx (\mathbf{Z}_5^{\#}, \odot)$.
- 5. Prove or disprove: $\mathbf{Z}_4 \times \mathbf{Z}_2 \approx \mathbf{Z}_2 \times \mathbf{Z}_2 \times \mathbf{Z}_2$.
- 6. Which of the following subsets S are subrings of the given rings R?
 - (a) $R = M(2, \mathbb{Z})$ with the usual matrix addition and matrix multiplication.

$$S = \{ M \in M(2, \mathbb{Z}) \mid \det(M) = 0 \}$$

(b) $R = \mathbf{Z}[x]$ with the usual polynomial addition and polynomial multiplication.

$$S = \{ p \in \mathbf{Z}[x] \mid p(0) = 0 \}.$$

- 7. Find the characteristic of *R*. (a) $R = \mathbb{Z}_3 \times \mathbb{Z}_4$. (b) $R = \mathbb{Z}_3 \times \mathbb{Z}_6$.
- 8. Prove: If a > b and b > c, then a > c.
- 9. Suppose $\theta : \mathbb{C} \to \mathbb{C}$ is a ring isomorphism such that $\theta(x) = x$ for all $x \in \mathbb{R}$. Suppose θ is not the identity mapping. Prove $\theta(i) = -i$. (Hint: Suppose that $\theta(i) = a + bi$ and then use the fact that θ preserves both of the ring operations.)