Show your work for each problem. You do not need to rewrite the statements of the problems on your answer sheets.

- 1. Find d = (42,315) and write d as a linear combination of 42 and 315.
- 2. Prove or disprove: If (a,b) = 1 and (b,c) = 1, then (a,c) = 1.
- Prove or disprove: $(\mathbf{Z}_6^{\#}, \mathbf{u})$ is a group. 3.
- 4. Prove that if A and B are Abelian groups, then $A \times B$ is also Abelian.
- Complete the following table so as to get a group: 5.

*	а	b	С
a			
b			
c		b	

- 6. Find the subgroup <(2.5)(1.3.4)> of S_5 . Find $*<(2.5)(1.3.4)>^*$. Find the index of $\langle (25)(134) \rangle$ in S_5 , i.e., find $[S_5 : \langle (25)(134) \rangle]$.
- Identify all of the subgroups of \mathbf{Z}_{24} . Construct a complete subgroup lattice for 7. \mathbf{Z}_{24} .
- 8. Let $M_{(a)}$ denote the group of symmetries of the equilateral triangle, i.e., $M_{(a)} = \{$ μ_0 , μ_{120} , μ_{240} , μ_{a0} , μ_{b0} , μ_{c0} }. Find the right cosets in $M_{(a)}$ determined by the subgroup $\langle \mu_{a0} \rangle$.
- Identify as true or false. If false, give a reason why. 9.
 - (a)
- $\mathbf{Z}_3 \times \mathbf{Z}_4$. \mathbf{Z}_{12} (b) $\mathbf{Z}_2 \times \mathbf{Z}_6$. \mathbf{Z}_{12} (c) $\mathbf{Z}_3 \times \mathbf{Z}_4$. $\mathbf{Z}_2 \times \mathbf{Z}_6$
- 10. Identify two non-isomorphic groups of order 18.