Show your work for each problem. You do <u>not</u> need to rewrite the statements of the problems on your answer sheets. Each problem part will be weighted at the same value.

- 1. For each ordered pair of integers (a,b) let $\alpha_{(a,b)}$: $\mathbb{Z} \to \mathbb{Z}$ be given by $\alpha_{(a,b)}(n) = an + b$.
 - (i) For which (a,b) is $\alpha_{(a,b)}$ one-to-one?
 - (ii) For which (a,b) is $\alpha_{(a,b)}$ onto?
- 2. Complete the Cayley table so that the operation * is commutative, has an identity and each element has an inverse.

*	W	X	у	Z
W	y			X
X	Z	W		
У				
Z				W

- 3. Determine whether the set *G* and the operation * form a group. If so, specify the identity. If not, state a reason why.
 - a) $G = \mathbf{Q}^+, * = \text{(real) multiplication}$
 - b) $G = 2\mathbb{Z}$, * = (real) addition
 - c) $G = 2\mathbb{Z}$, * is defined by m*n = mn/2.
- 4. Determine whether the given subset H is a subgroup of the specified group (G,*).
 - a) $G = S_5$, * = composition, $H = \{ (1), (13), (35), (15) \}$
 - b) $G = \{ \alpha_{(a,b)} \mid \alpha_{(a,b)}(n) = an + b, a = 1, b \in \mathbb{Z} \}, * = \text{composition}, H = \{ \alpha_{(a,b)} \in G \mid b \in 4\mathbb{Z} \}$
- 5. Find the symmetry group for a rhombus.
- 6. For a,b > 0 prove or disprove each of the following:
 - a) If $a \equiv b \pmod{n}$, then $a^2 \equiv b^2 \pmod{n}$.
 - b) If $a^2 \equiv b^2 \pmod{n}$, then $a \equiv b \pmod{n}$.
- 7. Prove: If a, b and c are integers, with $a \mid bc$ and (a,b) = 1, then $a \mid c$.