1. Let S be the set of positive real numbers. Let $m*n = \sqrt{mn}$.
 a) Is $*$ an operation on S?
 b) If $*$ is an operation on S, is it commutative?
 c) If $*$ is an operation on S, is it associative?
 d) If $*$ is an operation on S, does there exist an identity for $*$?

2. Let $G = \{ 2^p : p \in \mathbb{Z} \}$. Let $*$ be multiplication. Is $(G,*)$ a group?

3. Consider the group $(\text{M}(2,\mathbb{Z}),+)$. Let $S = \{ \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix} : a, b \in \mathbb{Z} \}$, $T = \{ \begin{bmatrix} a & b \\ 1 & 1 \end{bmatrix} : a, b \in \mathbb{Z} \}$.
 a) Is $(S, +)$ a subgroup of $(\text{M}(2,\mathbb{Z}),+)$?
 b) Is $(T, +)$ a subgroup of $(\text{M}(2,\mathbb{Z}),+)$?

4. Identify the symmetry group for the following figure, which consists of a square with one diagonal and the middle third of the other diagonal.

5. Let n be a fixed positive integer. Show that if $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$, then $a \equiv c \pmod{n}$.

6. Prove or disprove: $(a, b) = 1$ and $(c, d) = 1$ implies $(ac, bd) = 1$.

7. Consider the group (G, \oplus), where G is the subset of \mathbb{Z}_{42} given by $\langle [3] \rangle$. Determine whether the subset S of G given by $S = \{ [12], [24], [36], [48], [60], [72], [84] \}$ is a subgroup of G.

8. Find $(136, 26)$ and write it as a linear combination of 136 and 26.

9. Let (G, \ast) be a group and let A, B be subgroups of G. Prove or disprove the following:
 a) $A \cup B$ is again a subgroup.
 b) $A \cap B$ is again a subgroup.

10. Let (G, \ast) be an Abelian group with identity e and let $a, b \in G$. Let $o(a) = m$ and $o(b) = n$.
 a) Prove that $(ab)^{mn} = e$.
 b) How is $o(ab)$ related to mn?
11. Let $G = M_{(\cdot)}$ and let $H = \langle \mu_{270} \rangle$. Find $[G : H]$.

12. Find the subgroup lattice for:
 a) $M_{(\cdot)}$
 b) Z_{24}

13. Let Θ be a group homomorphism, $\Theta : G \to H$, and let $a \in G$. Show that $\Theta(a^{-1}) = \Theta(a)^{-1}$.

14. Determine whether the following pairs of groups, with addition as the operation in each case, are isomorphic or not (prove or disprove).
 a) $Z_5 \times Z_{10}$ and Z_{50}
 b) Z and E, where E is the set of even integers.

15. Find the smallest subring of \mathbb{Q} which contains $\frac{1}{2}$.

16. Verify that $Z_2 \times Z_3$ is not an integral domain.

17. Let D be a well-ordered integral domain. Let $a \in D$ and suppose that both $a \neq 0$ and $a \neq e$, where e is the unity of D. Prove that $a^2 > a$.

18. Consider $M(2, \mathbb{Z})$. Let $B = \begin{bmatrix} 1 & 0 \\ -1 & 0 \end{bmatrix}$. Consider the mappings λ, μ as mappings from the additive group $M(2, \mathbb{Z})$ to the additive group $M(2, \mathbb{Z})$ where λ is given by $\lambda(A) = BA$ for $A \in M(2, \mathbb{Z})$ and μ is given by $\mu(A) = AB$ for $A \in M(2, \mathbb{Z})$. Find $\text{ker}(\lambda)$ and $\text{ker}(\mu)$.

19. For each of the following give an example which satisfies the condition if such an example exists; if no example exists, explain why.
 a) rational + rational = irrational
 b) irrational + irrational = rational
 c) irrational + rational = rational
 d) irrational + rational = irrational

20. For $z \in \mathbb{C}$ let $\Theta(z) = \bar{z}$. Show that Θ is a ring isomorphism of \mathbb{C} to \mathbb{C}.

21. Let n be a fixed positive integer and T_n be the set of n^{th} complex roots of unity, i.e., $T_n = \{ z = \cos \left(\frac{2\pi k}{n} \right) + i \sin \left(\frac{2\pi k}{n} \right) : k \in \mathbb{Z} \}$. Show that T_n with multiplication as its operation is a group.

22. Let G and H be groups and let Θ be a homomorphism which maps G onto H. Prove or disprove the following:
 a) H is Abelian implies G is Abelian.
 b) G is Abelian implies H is Abelian.