Answer the problems on separate paper. You do <u>not</u> need to rewrite the problem statements on your answer sheets. Do your own work. <u>Show</u> all relevant steps which lead to your solutions. Retain this question sheet for your records.

Notation:

- $\mathbf{Z} = \{ n : n \text{ is an integer} \}$ $\mathbf{R} = \{ x : x \text{ is a real number} \}$ $\mathbf{C} = \{ z : z \text{ is a complex number} \}$
- 1. Let *S* be the set of positive real numbers. Let $m^*n = \sqrt{mn}$. a) Is * an operation on *S*?
 - b) If * is an operation on *S*, is it commutative?
 - c) If * is an operation on *S*, is it associative?
 - d) If * is an operation on *S*, does there exist an identity for *?
- 2. Let $G = \{ 2^p : p \in \mathbb{Z} \}$. Let * be multiplication. Is (G, *) a group?
- 3. Consider the group (M(2,**Z**),+). Let $S = \{ \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix} : a, b \in \mathbf{Z} \}, T = \{ \begin{bmatrix} a & b \\ 1 & 1 \end{bmatrix} : a, b \in \mathbf{Z} \}.$ a) Is (*S*,+) a subgroup of (M(2,**Z**),+)? b) Is (*T*,+) a subgroup of (M(2,**Z**),+)?
- 4. Identify the symmetry group for the following figure, which consists of a square with one diagonal and the middle third of the other diagonal.

- 5. Let *n* be a fixed positive integer. Show that if $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$, then $a \equiv c \pmod{n}$.
- 6. Prove or disprove: (a, b) = 1 and (c, d) = 1 implies (ac, bd) = 1.
- 7. Consider the group (G,\oplus) , where G is the subset of \mathbb{Z}_{42} given by < [3] >. Determine whether the subset S of G given by $S = \{[12], [24], [36], [48], [60], [72], [84]\}$ is a subgroup of G.
- 8. Find (136,26) and write it as a linear combination of 136 and 26.
- 9. Let (G,*) be a group and let A, B be subgroups of G. Prove or disprove the following:
 a) A ∪ B is again a subgroup.
 b) A ∩ B is again a subgroup.
- 10. Let (G,*) be an Abelian group with identity e and let a, b ∈ G. Let o(a) = m and o(b) = n.
 a) Prove that (ab)^{mn} = e.
 - b) How is o(*ab*) related to *mn*?

- 11. Let $G = M_{(\Box)}$ and let $H = \langle \mu_{270} \rangle$. Find [G : H].
- 12. Find the subgroup lattice for:
 - a) M_(⊳).
 - b) **Z**₂₄
- 13. Let θ be a group homomorphism, θ : $G \rightarrow H$, and let $a \in G$. Show that $\theta(a^{-1}) = \theta(a)^{-1}$.
- 14. Determine whether the following pairs of groups, with addition as the operation in each case, are isomorphic or not (prove or disprove).
 - a) $\mathbf{Z}_5 \times \mathbf{Z}_{10}$ and \mathbf{Z}_{50}
 - b) Z and E, where E is the set of even integers.
- 15. Find the smallest subring of \mathbf{Q} which contains $\frac{1}{2}$.
- 16. Verify that $\mathbf{Z}_2 \times \mathbf{Z}_3$ is not an integral domain.
- 17. Let *D* be a well-ordered integral domain. Let $a \in D$ and suppose that both $a \neq 0$ and $a \neq e$, where *e* is the unity of *D*. Prove that $a^2 > a$.
- 18. Consider M(2,**Z**). Let $B = \begin{bmatrix} 1 & 0 \\ -1 & 0 \end{bmatrix}$. Consider the mappings λ , μ as mappings from the additive group M(2,**Z**) to the additive group M(2,**Z**) where λ is given by $\lambda(A) = BA$ for $A \in M(2,\mathbf{Z})$ and μ is given by $\mu(A) = AB$ for $A \in M(2,\mathbf{Z})$. Find ker(λ) and ker(μ).
- 19. For each of the following give an example which satisfies the condition if such an example exists; if no example exists, explain why.
 - a) rational + rational = irrational
 - b) irrational + irrational = rational
 - c) irrational + rational = rational
 - d) irrational + rational = irrational

20. For $z \in \mathbb{C}$ let $\theta(z) = \overline{z}$. Show that θ is a ring isomorphism of \mathbb{C} to \mathbb{C} .

- 21. Let *n* be a fixed positive integer and T_n be the set of nth complex roots of unity, i.e., $T_n = \{z = \cos(\frac{2\pi k}{n}) + i\sin(\frac{2\pi k}{n}) : k \in \mathbb{Z} \}$. Show that T_n with multiplication as its operation is a group
 - group.
- 22. Let *G* and *H* be groups and let θ be a homomorphism which maps *G* onto *H*. Prove or disprove the following:
 - a) H is Abelian implies G is Abelian.
 - b) G is Abelian implies H is Abelian.