MATH 3360

Answer the problems on separate paper. You do <u>not</u> need to rewrite the problem statements on your answer sheets. Do your own work. <u>Show</u> all relevant steps which lead to your solutions. Retain this question sheet for your records.

Notation:

 $\mathbf{Z} = \{ n : n \text{ is an integer} \}$

1. Find the symmetry group for the following figure, which consists of an inscribed regular octagon with two diagonals.

- 2. Let *S* be the plane \mathbb{R}^2 and let ~ be the relation on *S* given by $(a_1, b_1) \sim (a_2, b_2)$ if $a_1 \cdot b_2 = a_2 \cdot b_1$. Determine whether ~ is an equivalence relation on *S*.
- 3. Let a, b, c be integers with c > 1 and let n be a fixed integer, n > 1. Prove or disprove:
 - a) $a \equiv b \pmod{n} \Rightarrow ac \equiv bc \pmod{n}$
 - b) $ac \equiv bc \pmod{n} \Rightarrow a \equiv b \pmod{n}$
- 4. Prove: (a,b) = 1 and $c \mid a \Rightarrow (c,b) = 1$.
- 5. Find (84,324). Find [84,324].
- 6. Let *H* be the subgroup of S_6 given by $H = \langle (16)(235) \rangle$. Find *H*. Find |*H*|. Find the index of *H* in S_6 , i.e., find [S_6 :*H*].
- 7. Find all of the subgroups of \mathbf{Z}_{30} and construct a subgroup lattice for \mathbf{Z}_{30} .
- 8. Assume that *G* is a finite group such that |G| < 32. Assume that *H* is a subgroup of *G* such that |H| > 2 and [G:H] > 9. Find |G|, |H| and [G:H].
- 9. Find the right cosets of <[6]> in \mathbb{Z}_{24} .
- 10. Determine whether the following are true or false:

a) $\mathbf{Z}_3 \times \mathbf{Z}_4 \approx \mathbf{Z}_2 \times \mathbf{Z}_6$ b) $\mathbf{Z}_6 \times \mathbf{Z}_5 \approx \mathbf{Z}_3 \times \mathbf{Z}_{10}$