Section I. Short Answer Problems. Answer the problems on separate paper. You do <u>not</u> need to rewrite the problem statements on your answer sheets. Work carefully. Do your own work. <u>Show all relevant</u> <u>supporting steps!</u> Attach this sheet to the front of your answers.

1. (5 pts) Find the determinant of the matrix A using an expansion by co-factors

where
$$A = \begin{bmatrix} 1 & -1 & 0 & 2 \\ -2 & 0 & 3 & 1 \\ -1 & -1 & 2 & 0 \\ 0 & 2 & -1 & 3 \end{bmatrix}$$

2. (5 pts) Find the values of x for which the determinant of the matrix A is zero

where
$$A = \begin{bmatrix} -1 & x & 1 & 0 \\ 1 & 1 & x & -2 \\ x & 0 & 1 & -1 \\ 2 & -1 & 2 & 1 \end{bmatrix}$$

3. (5 pts) Find the determinant of the matrix *A* by using elementary row operations to reduce *A* to a

triangular matrix
$$A = \begin{bmatrix} -1 & 2 & 1 & 0 \\ 2 & -1 & 0 & -1 \\ 3 & 2 & -1 & 2 \\ 1 & 0 & 2 & 2 \end{bmatrix}$$

4. (5 pts) Give an example to show that the determinant of a sum of matrices is, in general, not equal to the sum of the determinants of the matrices.

5. (5 pts) Determine whether the matrix A is singular where
$$A = \begin{vmatrix} -1 & 2 & 0 & 1 \\ 3 & 2 & 1 & -1 \\ 0 & 2 & 1 & -3 \\ 1 & 1 & -2 & 0 \end{vmatrix}$$

6. (6 pts) Let
$$A = \begin{bmatrix} 2 & -1 & 2 & 1 \\ 0 & -2 & 1 & 3 \\ 1 & -2 & -1 & 1 \\ 2 & 0 & -3 & 1 \end{bmatrix}$$
. Find the determinant of: (a) A^{T} (b) A^{5} (c) 6A

7. (6 pts) Let
$$\mathbf{u} = (-1, 2, -4, 1)$$
, $\mathbf{v} = (2, -1, -2, 1)$, $\mathbf{w} = (2, -1, -1, 3)$. Find:

(a)
$$-2u + 4v + 5w$$
 (b) $2v - 4u - 3w$

Name _____

Section II. Answer these problems on these test pages.

- 8. (3 pts) For each of the following sets answer the question: Is this set with its specified operations a vector space? If the answer is no, give a reason for why the answer is no.
 - A. $S = \{ p(x) \in P \mid p'(1) = p'(-1) \}$, addition is standard polynomial addition, scalar multiplication is standard scalar multiplication for polynomials
 - B. $S = \{(a,b) \mid a,b \in \mathbb{R}\},\$

addition is defined by $(a,b) \oplus (c,d) = (a+c,b-d)$ scalar multiplication is defined by $\alpha(a,b) = (\alpha a, \alpha b)$

C.
$$S = \left\{ \begin{bmatrix} a & 0 & -b \\ 0 & a-c & 0 \\ -b & 0 & c \end{bmatrix} | a, b, c \in \mathbb{R} \right\},\$$

addition is standard matrix addition, scalar multiplication is standard scalar multiplication

- A. Yes No
- B. Yes No
- C. Yes No
- 9. (6 pts) For each of the following sets answer the question: Is this subset of P_3 a subspace of P_3 ? If the answer is no, give a reason for why the answer is no.

A. { $p(t) \in P_3 \mid p(t) * p'(t) = 0$ for all t }

- B. { $p(t) \in P_3 \mid p''(t) = 0$ }
- C. { $p(t) \in P_3 \mid p(0)*p(1) = 0$ }
- D. { $p(t) \in P_3 \mid p(0)*p(1) = 1$ }
- E. { $p(t) \in P_3$ | p'(2) = p'(4) }

F. {
$$p(t) \in P_3$$
 | $p(t) = t^* p'(t)$ }

10. (6 pts) For each of the following sets answer the question: Is this set a spanning set for the given vector space?

A.	$\{ (2,5), (-6,-15) \} $ for \mathbb{R}^2	Yes	No
B.	$\{ (1,-2), (-1,2), (-2,1) \}, \mathbb{R}^2$	Yes	No
C.	$\{ (2,5,2), (-3,-5,2), (-3,2,1) \}, \mathbb{R}^3$	Yes	No
D.	$\{ (-2,3,4), (2,-1,-2), (2,5,4) \}, \mathbb{R}^3$	Yes	No
E.	$\{x, x^2 - x, x^2 + x\}, P_2$	Yes	No
F.	$\{x+1, x-1, x^2+x\}, P_2$	Yes	No

11. (6 pts) For each of the following sets answer the question: Is this set a linearly independent subset of the given vector space?

A.	{ (2,5), (-6,-15) } for \mathbb{R}^2	Yes	No
B.	$\{ (1,-2), (-1,2), (-2,1) \}, \mathbb{R}^2$	Yes	No
C.	$\{ (2,5,2), (-3,-5,2), (-3,2,1) \}, \mathbb{R}^3$	Yes	No
D.	$\{ (-2,3,4), (2,-1,-2), (2,5,4) \}, \mathbb{R}^3$	Yes	No
E.	$\{x, x^2 - x, x^2 + x\}, P_2$	Yes	No
F.	$\{x+1, x-1, x^2+x\}, P_2$	Yes	No

- 12. (6 pts) For each of the following sets answer the question: Is this set a basis for the given vector space? If the answer is no, give a reason for why the answer is no.
 - A. { (2,5), (-6,-15) } for \mathbb{R}^2 B. { (1,-2), (-1,2), (-2,1) }, \mathbb{R}^2 C. { (2,5,2), (-3,-5,2), (-3,2,1) }, \mathbb{R}^3 D. { (-2,3,4), (2,-1,-2), (2,5,4) }, \mathbb{R}^3 E. { $x, x^2 - x, x^2 + x$ }, P_2 F. { $x+1, x-1, x^2 + x$ }, P_2

