Form B

Answer the problems on separate paper. You do <u>not</u> need to rewrite the problem statements on your answer sheets. Work carefully. Calculators are not permitted. Do your own work. <u>Show all relevant</u> <u>supporting steps!</u>

- 1. (6 pts) Identify which of the following matrices are
 - (i) in reduced row echelon form [RREF],
 - (ii) in row echelon form but not reduced row echelon form [ROW],
 - (iii) not in row echelon form [NOT].

Use the labels RREF, ROW and NOT to denote your answers. (Note options (i), (ii) and (iii) are mutually exclusive.)

a.	$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$	b.	$\begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ c.	$\begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
d.	$\begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$	e.	$\begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} f.$	$\begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

2. (3 pts)

Each of the following augmented matrices is in row echelon form.

For each case, indicate whether the corresponding system of linear equations is consistent or is inconsistent

	1	-1	0 1]	[1	0	-1 0		[1	0	-1	-2	
a.	0	1	0 -2	b.	0	1	$\begin{array}{c c} 2 & 0 \\ 0 & 1 \end{array}$	с.	0	1	2	0	
	0	0	0 0		0	0	0 1		$\begin{bmatrix} 1\\0\\0 \end{bmatrix}$	0	1	1	

a.

3. (3 pts) Each of the following augmented matrices from Problem 2 and re-given below is in row echelon form.

For each case in which the corresponding system of linear equations is consistent, indicate whether the system has a unique solution or infinitely many solutions.

	[1	-1	0 1		[1	0	-1 0]		[1	0	-1	-2	
a.	0	1	0 -2	b.	0	1	2 0	с.	0	1	2	0	
	0	0	$ \begin{array}{c c} 0 & 1 \\ 0 & -2 \\ 0 & 0 \end{array} $		0	0	$\begin{array}{c c} 2 & 0 \\ 0 & 1 \end{array}$		0	0	1	$\begin{bmatrix} -2 \\ 0 \\ 1 \end{bmatrix}$	

4. (3 pts) Each of the following augmented matrices from Problem 2 and re-given below is in row echelon form.

For each case in which the corresponding system of linear equations is consistent and has a unique solution, find that unique solution.

a.
$$\begin{bmatrix} 1 & -1 & 0 & | & 1 \\ 0 & 1 & 0 & | & -2 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$
b.
$$\begin{bmatrix} 1 & 0 & -1 & | & 0 \\ 0 & 1 & 2 & | & 0 \\ 0 & 0 & 0 & | & 1 \end{bmatrix}$$
c.
$$\begin{bmatrix} 1 & 0 & -1 & | & -2 \\ 0 & 1 & 2 & | & 0 \\ 0 & 0 & 1 & | & 1 \end{bmatrix}$$

5. (12 pts) Each of the following augmented matrices is in reduced row echelon form. For each case, find the complete solution set of the corresponding system of linear equations.

	[1	0	-1 1		1	0	0 -1]
a.	0	1	$ \begin{array}{c c} -1 & 1 \\ -2 & -3 \\ 0 & 0 \end{array} $	b.	0	1	$ \begin{array}{c c} 0 & -1 \\ 0 & -2 \\ 1 & 3 \end{array} $
	0	0	0 0		0	0	1 3

6. (10 pts) Consider the following system of linear equations.

A. Construct an augmented matrix to represent the system of linear equations.

- B. Use Gaussian elimination to transform the augmented matrix to a matrix in row echelon form. State explicitly the specific elementary row operation which is being done at each step of the Gaussian elimination.
- C. Do NOT solve the system of equations.

 $\begin{cases} x_1 + x_3 + x_4 &= 1\\ -2x_1 + x_2 - 3x_3 + x_4 &= 0\\ x_2 - x_4 &= -1 \end{cases}$

7. (4 pts) Consider the matrices

$$A = \begin{bmatrix} -1 & 1 & -2 \\ 1 & -1 & 2 \end{bmatrix} \quad B = \begin{bmatrix} -1 & 2 \\ 1 & -1 \end{bmatrix} \qquad C = \begin{bmatrix} 1 & -1 & 2 \\ 0 & 1 & -1 \end{bmatrix} \quad D = \begin{bmatrix} 2 & 0 \\ -1 & -1 \end{bmatrix}$$

For each of the following operations, indicate whether it is possible or not.

a. C + 2A b. DC c. AC d. CD^{T}

8. (12 pts)

Consider the matrices given in Problem 7 and re-given below

$$A = \begin{bmatrix} -1 & 1 & -2 \\ 1 & -1 & 2 \end{bmatrix} \quad B = \begin{bmatrix} -1 & 2 \\ 1 & -1 \end{bmatrix} \qquad C = \begin{bmatrix} 1 & -1 & 2 \\ 0 & 1 & -1 \end{bmatrix} \qquad D = \begin{bmatrix} 2 & 0 \\ -1 & -1 \end{bmatrix}$$

For each of the following operations which is possible, perform it.
a. C + 2A b. DC c. AC d. CD^T

9. (8 pts) Let $A = \begin{bmatrix} 0 & 0 \\ -1 & 2 \end{bmatrix}$. Find 2×2 matrices B and C such that $B \neq C$ and neither is the zero matrix for which the matrix equation AB = AC holds.

10. (8 pts) For each of the following pairs of matrices find an elementary matrix E such that EA = B.

a.
$$A = \begin{bmatrix} 1 & -2 \\ 3 & -1 \end{bmatrix} \qquad B = \begin{bmatrix} 4 & -8 \\ 3 & -1 \end{bmatrix}$$

b.
$$A = \begin{bmatrix} -1 & 0 & 2 \\ 1 & -1 & -1 \\ 2 & -1 & -2 \end{bmatrix} \qquad B = \begin{bmatrix} -1 & 0 & 2 \\ 1 & -1 & -1 \\ -1 & -1 & 4 \end{bmatrix}$$

11. (14 pts) Find the determinant of each of the following matrices

a.
$$A = \begin{bmatrix} 1 & -2 \\ 2 & -6 \end{bmatrix}$$
 b. $B = \begin{bmatrix} -1 & 0 & 2 \\ 1 & 3 & -1 \\ 1 & -1 & 0 \end{bmatrix}$

c.
$$C = \begin{bmatrix} 0 & 1 & 2 & -1 \\ 1 & 1 & -1 & 3 \\ -2 & 1 & 1 & -1 \\ 1 & 0 & -1 & 1 \end{bmatrix}$$

12. (3 pts) For each of the matrices in Problem 11 and re-given below, determine whether it is singular or non-singular.

a.
$$A = \begin{bmatrix} 1 & -2 \\ 2 & -6 \end{bmatrix} b. \qquad B = \begin{bmatrix} -1 & 0 & 2 \\ 1 & 3 & -1 \\ 1 & -1 & 0 \end{bmatrix}$$

c.
$$C = \begin{bmatrix} 0 & 1 & 2 & -1 \\ 1 & 1 & -1 & 3 \\ -2 & 1 & 1 & -1 \\ 1 & 0 & -1 & 1 \end{bmatrix}$$

13. (9 pts) Let A and B be 3×3 matrices such that det(A) = -2 and det(B) = 5. Find the value of

a. det(BA) b. det(2B) c. $det(B^2)$

14. (8 pts) Find all values of c for which the following matrix is singular

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & -1 \\ -1 & -1 & c \\ 4 & c & -2 \end{bmatrix}$$