In each of Problems 11–16, a function \(f \) is given along with a number \(c \) in its domain.

a. Find the difference quotient of \(f \).

b. Find \(f'(c) \) by computing the limit of the difference quotient.

11. \(f(x) = 3 \) at \(c = -5 \)
12. \(f(x) = x \) at \(c = 2 \)
13. \(f(x) = 2x \) at \(c = 1 \)
14. \(f(x) = 2x^2 \) at \(c = 1 \)
15. \(f(x) = 2 - x^2 \) at \(c = 0 \)
16. \(f(x) = -x^2 \) at \(c = 2 \)

Use the definition to differentiate the functions given in Problems 17–28, and then describe the set of all numbers for which the function is differentiable.

17. \(f(x) = 5 \)
18. \(g(x) = 3x \)
19. \(f(x) = 3x - 7 \)
20. \(g(x) = 4 - 5x \)
21. \(g(x) = 3x^2 \)
22. \(h(x) = 2x^2 + 3 \)
23. \(f(x) = x^2 - x \)
24. \(g(t) = 4 - t^2 \)
25. \(f(s) = (s - 1)^2 \)
26. \(f(x) = \frac{1}{2x} \)
27. \(f(x) = \sqrt{5x} \)
28. \(f(x) = \sqrt{x + 1} \)

Find an equation for the tangent line to the graph of the function at the specified point in Problems 29–34.

29. \(f(x) = 3x - 7 \) at \((3, 2) \)
30. \(g(x) = 3x^2 \) at \((-2, 12) \)
31. \(f(s) = s^3 \) at \(s = -\frac{1}{2} \)
32. \(g(t) = 4 - t^2 \) at \(t = 0 \)
33. \(f(x) = \frac{1}{x + 3} \) at \(x = 2 \)
34. \(g(x) = \sqrt{x - 5} \) at \(x = 9 \)

Find an equation of the normal line to the graph of the function at the specified point in Problems 35–38.

35. \(f(x) = 3x - 7 \) at \((3, 2) \)
36. \(g(x) = 4 - 5x \) at \((0, 4) \)
37. \(f(x) = \frac{1}{x + 3} \) at \(x = 3 \)
38. \(f(x) = \sqrt{5x} \) at \(x = 5 \)

Find \(\frac{dy}{dx} \) for the functions and values of \(c \) given in Problems 39–42.

39. \(y = 2x \), \(c = -1 \)
40. \(y = 4 - x \), \(c = 2 \)
41. \(y = 1 - x^2 \), \(c = 0 \)
42. \(y = \frac{4}{x} \), \(c = 1 \)

43. Suppose \(f(x) = x^2 \).

a. Compute the slope of the secant line joining the points on the graph of \(f \) whose \(x \)-coordinates are \(-2\) and \(-1\).

b. Use calculus to compute the slope of the line that is tangent to the graph when \(x = -2 \) and compare this slope with your answer in part a.

44. Suppose \(f(x) = x^3 \).

a. Compute the slope of the secant line joining the points on the graph of \(f \) whose \(x \)-coordinates are \(1 \) and \(1.1 \).

b. Use calculus to compute the slope of the line that is tangent to the graph when \(x = 1 \) and compare this slope to your answer from part a.

45. Sketch the graph of the function \(y = x^2 - x \). Determine the value(s) of \(x \) for which the derivative is 0. What happens to the graph at the corresponding point(s)?

46. a. Find the derivative of \(f(x) = x^2 - 3x \).

b. Show that the parabola whose equation is \(y = x^2 - 3x \) has one horizontal tangent line. Find the equation of this line.

c. Find a point on the graph of \(f \) where the tangent line is parallel to the line \(3x + y = 11 \).

d. Sketch the graph of the parabola whose equation is \(y = x^2 - 3x \). Display the horizontal tangent line and the tangent line found in part c.

47. a. Find the derivative of \(f(x) = 4 - 2x^2 \).

b. The graph of \(f \) has one horizontal tangent line. What is its equation?

c. At what point on the graph of \(f \) is the tangent line parallel to the line \(8x + 3y = 4 \)?

48. Show that the function \(f(x) = |x - 2| \) is not differentiable at \(x = 2 \).

49. Is the function \(f(x) = 2| x + 1| \) differentiable at \(x = 1 \)?

50. Let \(f(x) = \begin{cases} -x^2 & \text{if } x < 0 \\ x^2 & \text{if } x \geq 0 \end{cases} \)

Does \(f'(0) \) exist? Hint: Find the difference quotient and take the limit as \(\Delta x \to 0 \) from the left and from the right.

51. Let \(f(x) = \begin{cases} -2x & \text{if } x < 1 \\ \sqrt{x - 3} & \text{if } x \geq 1 \end{cases} \)

a. Sketch the graph of \(f \).

b. Show that \(f \) is continuous but not differentiable at \(x = 1 \).

52. Counterexample Problem Give an example of a function that is continuous on \((-\infty, \infty)\) but is not differentiable at \(x = 5 \).

Estimate the derivative \(f'(c) \) in Problems 53–58 by evaluating the difference quotient

\[
\frac{\Delta y}{\Delta x} = \frac{f(c + \Delta x) - f(c)}{\Delta x}
\]

at a succession of numbers near \(c \).