Section 3.8

- I. Tangent Line Approximation
 - a. Let y = f(x) be a function which is differentiable at x = a. Then, the tangent line to the graph of y = f(x) at the point P = (a, f(a)) has slope m = f'(a) and equation y f(a) = f'(a)(x a) or alternately y = f(a) + f'(a)(x a).
 - b. For x_1 "near" a the value $f(x_1)$ is reasonably approximated by the y-value on the tangent line, i.e., $f(x_1) \approx f(a) + f'(a)(x_1 a)$.
 - c. We call L(x) = f(a) + f'(a)(x a) the linear approximation to f at x = a or alternately, the linearization of f at x = a.
 - d. Graphical Interpretation

Examples

II. Differentials

- a. Let y = f(x) be a function which is differentiable at x = a. Then, the differential of y (or f) is dy = f'(x)dx (or df = f'(x)dx)
- b. Graphical Interpretation
- c. Differential Rules

Examples

III. Error Approximations: f(x) vs $f(x + \Delta x)$

a. Error:
$$\Delta f = f(x + \Delta x) - f(x) \approx f'(x) \Delta x = df$$

b. Relative Error:
$$\frac{\Delta f}{f} \approx \frac{df}{f}$$

Examples

IV. Newton's Method for Root Approximation

- a. Let y = f(x) be a function which has a root at x^* . Given a reasonable initial "guess" x_n as to the value of the root x^* , then $x_{n+1} = x_n \frac{f(x_n)}{f'(x_n)}$ will be a better approximation for the value of x^* .
- b. Graphical interpretation
- c. Algorithm (Page 172)

Examples