Math 1351-011

Exam III-D

Answer the problems on **separate** paper. You do <u>not</u> need to rewrite the problem statements on your answer sheets. Do your own work. Show **all relevant steps** which lead to your solutions. Attach this question sheet to the front of your answer sheets.

- 1. Consider the function $y = \sqrt{2x+9}$.
 - a. (9 pts) Construct a linearization for the function at x = 8.
 - b. (6 pts) Use the linearization constructed in part a. to construct an approximation for the value of $\sqrt{25.2}$
- 2. (12 pts) Using calculus, find the absolute maximum and absolute minimum values of $f(x) = 3x^4 + 8x^3 18x^2 + 5$ on the interval [-1, 2]
- 3. (45 pts) Let $f(x) = -\frac{4x+1}{(3x+1)^2}$. Find and identify each of the following (if they exist) record your solutions to parts a. through m. on the back of this page.
 - a. domain of f
 - b. intercepts of f
 - c. vertical asymptotes to the graph of f
 - d. horizontal asymptotes to the graph of f
 - e. critical numbers of f
 - f. intervals on which the graph of f is increasing
 - g. intervals on which the graph of f is decreasing
 - h. local maximum points of the graph of f
 - i. local minimum points of the graph of f
 - j. 2^{nd} order critical numbers of f
 - k. intervals on which the graph of f is concave up
 - 1. intervals on which the graph of f is concave down
 - m. inflection points of the graph of f

Then, incorporate all of the above information into a sketch the graph of f.

4. (30 pts) Find the following limits (if they exist):

- a. $\lim_{x \to \infty} \frac{2x^3 x^{\frac{3}{2}} + 3}{3x^3 + 4x 1}$ b. $\lim_{x \to 0} \frac{\sin^2 x}{\cos 2x 1}$ c. $\lim_{x \to 0} \frac{x \tan x}{1 + \cos x}$
- d. $\lim_{x \to \infty} \sqrt{x}e^{-x}$ e. $\lim_{x \to \infty} \left(x^2 + 1\right)^{\frac{1}{x}}$

Solution Space for Problem 3

	Problem Statement	Problem Solution
a	domain of f	
b	intercepts of f	
с	vertical asymptotes to the graph of f	
d	horizontal asymptotes to the graph of f	
e	critical numbers of f	
f	intervals on which the graph of f is increasing	
g	intervals on which the graph of f is decreasing	
h	local maximum points of the graph of f	
i	local minimum points of the graph of f	
j	2^{nd} order critical numbers of f	
k	intervals on which the graph of f is concave up	
1	intervals on which the graph of f is concave down	
m	inflection points of the graph of f	