Math 4362 - Number Theory Homework 6 Due in Class - Thursday October 25, 2018

- **1.** Find the order of all appropriate positive integers modulo 14, and identify the primitive roots, if any.
- **2.** Prove that
 - (a) if a has order hk modulo n, then a^h has order k modulo n.
 - (b) if a has order 2k modulo an odd prime p, then $a^k \equiv -1 \pmod{p}$.
- **3.** Let *r* be a primitive root of the positive integer *n*. Prove that r^k is a primitive root of *n* if and only if $gcd(k, \phi(n)) = 1$.
- 4. Determine all primitive roots of p = 19.
- 5. Given that 3 is a primitive root of 43, find the following:
 - (a) all positive integers less than 43 that have order 6 modulo 43;
 - (b) all positive integers less than 43 that have order 21 modulo 43; and
 - (c) all other primitive roots of 43.
- 6. Let *r* be a primitive root of the odd prime *p*. Prove the following:
 - (a) if $p \equiv 1 \pmod{4}$, then -r is also a primitive root of p.
 - (**b**) if $p \equiv 3 \pmod{4}$, then -r has order $\frac{p-1}{2}$ modulo p.