Math 4362 - Number Theory Homework 6
 Due in Class - Thursday October 25, 2018

1. Find the order of all appropriate positive integers modulo 14 , and identify the primitive roots, if any.
2. Prove that
(a) if a has order $h k$ modulo n, then a^{h} has order k modulo n.
(b) if a has order $2 k$ modulo an odd prime p, then $a^{k} \equiv-1(\bmod p)$.
3. Let r be a primitive root of the positive integer n. Prove that r^{k} is a primitive root of n if and only if $\operatorname{gcd}(k, \phi(n))=1$.
4. Determine all primitive roots of $p=19$.
5. Given that 3 is a primitive root of 43 , find the following:
(a) all positive integers less than 43 that have order 6 modulo 43;
(b) all positive integers less than 43 that have order 21 modulo 43; and
(c) all other primitive roots of 43 .
6. Let r be a primitive root of the odd prime p. Prove the following:
(a) if $p \equiv 1(\bmod 4)$, then $-r$ is also a primitive root of p.
(b) if $p \equiv 3(\bmod 4)$, then $-r$ has order $\frac{p-1}{2}$ modulo p.
