Math 4362 - Number Theory Homework 5

Due in Class - Friday October 24, 2014

1. Using Fermat's little theorem, find the remainder on dividing

$$1865^{1910} + 1986^{2061}$$

by 7.

- 2. Use Wilson's Theorem to find the remainder when
 - (a) 15! is divided by 17.
 - **(b)** 2(26!) is divided by 29.
- 3. Calculate $\tau(5040)$, $\sigma(5040)$, $\mu(5040)$ and $\phi(5040)$.
- **4.** Prove that if $n = p_1^{a_1} p_2^{a_2} \cdots p_r^{a_r} > 1$ then

$$\sum_{d|n} \mu(d)\sigma(d) = (-1)^r p_1 p_2 \cdots p_r.$$

5. Prove that for any positive integer n,

$$\sum_{d|n} 1/d = \sigma(n)/n.$$

- **6.** Find all solutions of $\phi(n) = 24$.
- 7. For positive integers m and n prove that
 - (a) $\phi(m)\phi(n) = \phi(mn)\phi(d)/d$, where $d = \gcd(m, n)$
 - **(b)** $\phi(m)\phi(n) = \phi(\gcd(m,n))\phi(\operatorname{lcm}(m,n)).$