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Abstract

A differential Azumaya algebra, and in particular a differential matrix
algebra, over a differential field K with constants C is trivialized by a
Picard–Vessiot (differential Galois) extension E. This yields a bijection
between isomorphism classes of differential algebras and Picard–Vessiot
cocycles Z1(G(E/K), PGLn(C)) which cobound in Z1(G(E/K), PGLn(E)).

1 Introduction

Let K be a differential field with algebraically closed characteristic zero field
of constants C and derivation D = DK . By a differential Azumaya algebra
over K we mean a pair (A,D) where A is an Azumaya (central separable) K
algebra and D is a derivation of A extending the derivation D of its center
K. Given two such pairs (A1,D1) and (A2,D2), we can form the differential
Azumaya algebra (A1 ⊗ A2,D1 ⊗ D2), where the derivation D1 ⊗ D2 is given
by D1 ⊗ 1 + 1 ⊗ D2. Morphisms of differential Azumaya algebras over K are
K algebra homomorphisms preserving derivations. We denote the isomorphism
class of (A,D) by [A,D]. The above tensor product defines a monoid operation
on the isomorphism classes (the identity being the class [K, DK ]), and hence
we can form the corresponding universal group Kdiff

0 Az(K). The corresponding
object for K when derivations are not considered is the familiar K0Az(K) as
defined by Bass in [1, Chapter III], and there is an obvious group homomorphism
Kdiff

0 Az(K) → K0Az(K) given by [A,D] 7→ [A]. This group homomorphism
is surjective: any derivation, such as DK , of the center of any Azumaya K
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algebra A can be extended to a derivation of A (Hochschild’s Theorem; see
[5]). These extensions can be done in many ways (we recall, for later use, that
any two differ by a derivation trivial on the center, and hence inner [1, 1.6, p.
86]). For the matrix algebras Mn(K), we have the extension which is given
by DK on the matrix coordinates, and we denote the corresponding differential
Azumaya algebra (Mn(K), ( )′). We note that under the usual isomorphism
from Mp(K) ⊗ Mq(K) → Mpq(K) we have (Mp(K), ( )′) ⊗ (Mq(K), ( )′)
isomorphic to (Mpq(K), ( )′).

The group homomorphism K0Az(K) → Br(K) from the universal isomor-
phism class group of K to its Brauer group [1, 6.2, p. 113] is the surjection
with kernel the subgroup K0Mat(K) generated by the matrix algebras. We
consider the corresponding subgroup M1 of Kdiff

0 Mat(K generated by the al-
gebras (Mn(K), ( )′) and its quotient Brdiff(K). We call this quotient the
differential Brauer Group of K. It will be of interest even in the case that K is
algebraically closed (when Br(K) is trivial, in which case Brdiff(K) reduces to
M2/M1, where the group M2 is generated by the differential Azumaya algebras
[Mn(K),D] whose K algebra component is a matrix algebra. ).

Of course such a K still usually has a substantial differential Galois the-
ory, with connected Galois groups. In fact, for any given differential Azumaya
algebra (A,D), we may make a finite Galois (hence also uniquely differential
Galois) base extension E of K such that with this extension of scalars A be-
comes a matrix algebra and we have (A,D) ⊗ E in M2 for Kdif

0 Az(K). Thus,
for the relations with the connected differential Galois theory, we can even con-
centrate on the group M2/M1 for our base field, which we do below. Once this
group is analyzed we return to the general situation in our final section. In
this context, the algebras (Mn(K), ( )′) play the role of matrix algebras in the
non–differential theory, and hence we will refer to them as the trivial differential
Azumaya algebras.

We retain throughout the paper the terminology, notation, and conventions
of this introduction.

2 Differential Matrix Algebras

We begin with an analysis of the structure of a differential Azumaya algebra
whose underlying algebra is a matrix algebra.

Definition 1. Let P be an n×n matrix over K. Then DP denotes the derivation
of Mn(K) given by

DP (X) = (X)′ + PX −XP.

Note that DP = DQ implies that P − Q is central, and hence scalar, so
P = Q + aIn for suitable a ∈ K, and conversely. And we note that

(Mn(K),DP )⊗ (Mm(K),DQ) = (Mnm(K),DP⊗Im+In⊗Q).

It is a simple consequence of the fact that central derivations of Azumaya
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algebras are inner to see that all matrix differential Azumaya algebras have such
derivations:

Proposition 1. Let (Mn(K),D) be a differential Azumaya K algebra. Then
there is a matrix P ∈ Mn(K) such that D = DP .

Proof. D− ( )′ is a central derivation of Mn(K), and hence inner. If this inner
derivation is given by P ∈ Mn(K), then D(X) − (X)′ = PX − XP , so that
D = DP .

From now on, we will denote a matrix differential Azumaya algebra as
(Mn(K),DP ), where it is understood that P is only defined up to addition
of scalar multiples of the identity.

Using this structure, we consider when a matrix differential Azumaya algebra
is trivial.

Proposition 2. (Mn(K),DP ) is isomorphic to (Mn(K),DQ) if and only if
there is H ∈ GLn(K) and b ∈ K such that H−1H ′ + H−1QH = P + bIn. In
particular, (Mn(K),DP ) is isomorphic to (Mn(K), ( )′) if and only if there is
F ∈ GLn(K) and a ∈ K such that F−1(F )′ = P + aIn.

Proof. Suppose T : (Mn(K),DP ) → (Mn(K),DQ) is a differential K algebra
isomorphism. As a K algebra isomorphism (actually automorphism) of Mn(K),
T is inner [6, Thm. 2.10, p.16]: there is H ∈ GLn(K) such that T (X) =
HXH−1. Note that H is only defined up to a non–zero scalar multiple. Since
T is differential, we have T (DP (X)) = DQ(T (X)), so

(HXH−1)′ + QHXH−1 −HXH−1Q = H(X ′ + PX −XP )H−1.

We expand: (HXH−1)′ = H ′XH−1 + HX ′H−1 + HX(H−1)′, and (H−1)′ =
−H−1H ′H−1. So the first term on the right hand side above is H ′XH−1 +
HX ′H−1 −HXH−1H ′H−1. The first term on the left hand side and the sec-
ond on the expanded right hand side are equal and may be canceled. Then
premultiplying both sides by H−1 and postmultiplying both sides by H reduces
the equation to

(H−1H ′ + H−1QH)X −X(H−1H ′ + H−1QH) = PX −XP

which implies that H−1H ′ + H−1QH − P is central, hence of the form bIn.
Conversely, suppose that there is an H ∈ GLn(K) such that P + bIn =

H−1H ′ + H−1QH. Let R = P + bIn. Then DP = DR and R = H−1H ′ +
H−1QH. We check that the inner automorphism TH : Mn(K) → Mn(K),
TH(X) = HXH−1, is a differential isomorphism (Mn(K),DR) → (Mn(K),DQ):

TH(DR(X)) = HX ′H−1 + HRXH−1 −HXRH−1

and

HRXH−1 −HXRH−1 = H(H−1H ′ + H−1QH)XH−1 −HX(H−1H ′ + H−1QH)H−1

= H ′XH−1 + QHXH−1 −HXH−1H ′H−1 −HXH−1Q
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so that

TH(DR(X)) = (HXH−1)′ + Q(HXH−1)− (HXH−1)Q = DQ(TH(X))

as required.

As the second part of the above proof shows, as far as the differential matrix
algebra goes, the scalar a can essentially be taken to be zero. We record this
observation formally as a corollary:

Corollary 1. Let (Mn(K),D) be a differential Azumaya algebra isomorphic to
the trivial algebra. Then there are Q ∈ Mn(K) and F ∈ GLn(K) such that
D = DQ and Q = F−1F ′. Conversely, if F ∈ GLn(K) and Q = F−1F ′ then
(Mn(K),DQ) is isomorphic to the trivial algebra.

If E ⊇ K is a differential extension field, and (A,D) is a differential Azumaya
K algebra, then (A ⊗K E,D ⊗K DE), where DE is the derivation of E and
D ⊗K DE = D ⊗ 1 + 1 ⊗ DE , is a differential Azumaya E algebra. In case
A = Mn(K), we identify A ⊗K E with Mn(E) as usual. The Proposition (or
its Corollary) give us a criterion to tell whether (Mn(K),D) becomes trivial
after extending scalars to E. To make this explicit, we turn to Picard–Vessiot
extensions.

The matrix equation Q = F−1F ′ means that F is a solution of the matrix
differential equation Y ′ = Y Q, and conversely any solution F of the latter
satisfies Q = F−1F ′.

A Picard–Vessiot extension of K for the matrix differential equation Y ′ =
RY , R ∈ Mn(K), is a no new constant differential field extension E ⊇ K such
that the equation has an invertible matrix solution (a matrix F ∈ GLn(E)
such that F ′ = RF , and which is minimal over K with this property (E is
differentially generated over K by the entries of F ).

Theorem 1. Let (Mn(K),D) be a differential matrix algebra over K. Then
there is a Picard–Vessiot extension E ⊇ K such that (Mn(K),D) ⊗K E is
trivial.

Proof. We choose P ∈ Mn(K) so that D = DP . Then we let E ⊇ K be
a Picard–Vessiot extension for the equation Y ′ = P tY . By definition, there is
G ∈ GLn(E) such that G′ = P tG. Let F = Gt. Then F ′ = FP , so by Corollary
(1) we have that (Mn(K),D)⊗K E is trivial.

3 Automorphisms of matrix differential algebras

Suppose that (Mn(K),D) is a matrix differential algebra which becomes trivial
in the Picard–Vessiot extension E ⊇ K. There is an action of G = G(E/F )
on (Mn(K),D) ⊗K E by 1 ⊗ G, whose fixed ring is (Mn(K),D), and there is
an action of G on (Mn(E), ( )′) by Mn(G) (action on the coordinates) whose
fixed ring is (Mn(K), ( )′). By assumption, the two algebras (Mn(K),D)⊗K E
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and (Mn(E), ( )′) are isomorphic, so the actions are, in general, different. We
begin by analyzing the second (Mn(G)) action on the first algebra.

The algebra (Mn(K),D)⊗KE may be described concretely as follows: choose
P ∈ Mn(K) such that D = DP . We have Mn(K) ⊆ Mn(E) and we can regard
P as belonging to the latter. Thus

(Mn(K),D)⊗K E = (Mn(E),DP ).

If σ ∈ G and X ∈ Mn(E), we let σ(X) denote the action on coordinates
Mn(σ)(X). Under the above identification, this is the same as the (differential
automorphism) action of 1 ⊗ σ on (Mn(K),D) ⊗K E. Note that DP (σ(X)) =
σ(X)′ + Pσ(X)− σ(X)P and σ(DP (X)) = σ(X ′) + σ(P )σ(X)− σ(X)σ(P ) are
equal, since σ commutes with derivation on E and P ∈ Mn(K) is fixed by σ.

Moreover, we have, by assumption, that (Mn(E),DP ) and (Mn(E), ( )′) are
isomorphic, and we may assume that this isomorphism is the inner isomorphism
TF given by F ∈ GLn(E) where F−1F ′ = P . Thus the above G action on
(Mn(E),DP ) can be transported to a G action on (Mn(E), ( )′) via TF , so
that σ ∈ G acts via TF Mn(σ)T−1

F . We denote this action by σX, X ∈ Mn(E),
so σX = F (σ(F−1XF ))F−1.

We recall that F satisfies the differential equation F ′ = FP . This implies
that, for σ ∈ G, σ(F )′ = σ(F )P . It follows that (σ(F )F−1)′ = 0 so that
σ(F ) = σDF with σD ∈ GLn(C). Thus F (σ(F−1XF ))F−1, which is also
F (σ(F−1)σ(X)σ(F ))F−1 is expanded to

FF−1
σD−1σ(X)σDFF−1 = σD−1σ(X)σD.

By construction, X 7→ σX is a differential algebra automorphism of (Mn(E), ( )′),
and the preceding analysis shows that it is given by the composition Inn(σD−1)◦
Mn(σ) of inner automorphism by σD−1 following the action of σ on coordinates.

We summarize the above calculations in the following proposition:

Proposition 3. Let E ⊇ K be a Picard–Vessiot extension with group G =
G(E/K) and let P ∈ Mn(K) and F ∈ GLn(E) be such that F ′ = FP . For
σ ∈ G let σD ∈ GLn(C) denote σ(F )F−1. For X ∈ Mn(E), let σX =
σD−1σ(X)σD. Then X 7→ σX is a differential automorphism of (Mn(E), ( )′).
Moreover, σ 7→ σ(·) is a representation of G in the group of differential auto-
morphisms of (Mn(E), ( )′).

Additionally, the differential isomorphism TF : (Mn(E),DP ) → (Mn(E), ( )′),
TF (X) = FXF−1, is G equivariant, when G acts on the codomain via the above
representation and on the domain via the action on coordinates.

Proof. It remains to show that σ 7→ σ(·) is a representation and that TF is G
equivariant. For the former, the equations σ(F ) = σDF imply that στD =
τDσD, so that σ 7→ Inn(σD−1) is a group homorphism. Since σD ∈ GLn(C),
inner automorphism by σD−1 commutes with Mn(σ), from which it follows that
σ 7→ Inn(σD−1) ◦Mn(σ) is a group homomorphism.

The final assertion follows from the description of σ(·) as the composition
TF Mn(σ)T−1

F , which implies that TF σ(X) = σ(TF (X)).
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We conclude this section with some observations on the groupAn = Autdiff(Mn(E), ( )′)
of differential automorphisms of the trivial matrix differential algebra over E.
Every such automorphism restricts to an automorphism of the center E, and this
restriction homomorphism has a right inverse given by γ 7→ Mn(γ). The kernel
consists of differential automorphisms trivial on the center. Since (Mn(E), ( )′)
is also (Mn(E),DI), its E linear differential automorphisms are, by Proposition
(2), inner automorphisms TS where S−1S′ = dIn for some d ∈ E (d = 1 + a
in the notation of the Proposition). So S′ = dS, and then any non–zero ele-
ment entry y of S also satisfies y′ = dy, and it follows that S = yD for some
D ∈ GLn(C). Since TS = TD, we see that the group of differential automor-
phisms of (Mn(E), ( )′) is {TD | D ∈ GLn(C)}. We recognize this latter group
as isomorphic to the projective linear group, and so denote it PGLn(C).

Thus An is the semi-direct product of this normal subgroup and the group
of differential automorphisms of E. (A differential automorphism γ congugates
an inner automorphism TS to Tγ(S), and γ is trivial on C, so the semidirect
product is actually a product. We consider its subgroup PGLn(G)×G(E/K);
it is in this latter group in which the representation of G of Proposition (3)
takes values.

4 Cocycles

In the (semi-)direct product description of the differential automorphisms of
(Mn(E), ( )′) which lie over the automorphims G(E/K) of the center, the
representation of Proposition (3) is given as σ 7→ (T

σD−1 , σ). More generally,
a homomorphism G → PGLn(C) × G(E/K) such that the second coordinate
of the image of σ is σ is given by σ 7→ (Φ(σ), σ) where Φ : G → PGLn(C)
is a one cocyle (here a homomorphism, since G acts trivially), and conversely.
In the case of the algebra (Mn(E),DP ) of Proposition (3), this cocycle is Φ :
G → PGLn(C) by σ 7→ T

σD−1 . We note that this is algebraic: recall that σD
is defined by σ(F ) = σDF , and that F ′ = FP . Taking transposes, we have
that σ(F t) = F t

σDt and that (F t)′ = P tF t. So we recognize σ 7→ σDt as the
representation of G → GLn(C) associated to the Picard–Vessiot extension of K
generated by the entries of F t [7, (2), p. 19] and hence algebraic.

We consider the effect of an isomorphism (Mn(K),DP ) → (Mn(K),DQ) on
the above association. By Proposition (2), such an isomorphism is given by
conjugation by a matrix H such that P = H−1H ′ + H−1QH, or equivalently
Q = HPH−1 −H ′H−1. This implies that

(FH−1)−1(FH−1)′ = HF−1(F (H−1)′ + F ′H−1)

= −HH−1H ′H−1 + HF−1F ′H−1 = −H ′H−1 + HPH−1

= Q

so the association P → F becomes Q → FH−1.
The inclusion of PGLn(C) in PGLn(E) is G equivariant, so we have an
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associated map

Hom(G, PGLn(C)) = Z1(G, PGLn(C)) → Z1(G, PGLn(E))

of cocycle sets. (Cocyles in Z1(G, PGLn(E)) are rational functions Ψ such
that Ψ(στ) = Ψ(σ)σ(Ψ(τ)).) In the case of Proposition (3), since σD−1 =
Fσ(F−1), we have that the cocycle Φ is actually a coboundary given by F−1:
we define B1(G, PGLn(E)) to be the functions G → PGLn(E) given by σ 7→
Jσ(J)−1 for some J ∈ PGLn(E). (Note that this is the correct side for the
G action to agree with our definition of cocycle.) Under the isomorphism
(Mn(K),DP ) → (Mn(K),DQ) given by conjugation by H, the corresponding
cocycle is the coboundary given by (FH−1)−1, or σ 7→ FH−1σ((FH−1)−1).
When H ∈ GLn(K), so σ(H) = H, this shows that the coboundaries given by
F−1 and (FH−1)−1 are equal.

If the matrix M in GLn(E) represents J ∈ PGLn(E), then so does aM for
any non–zero a ∈ E, and aMσ(aM)−1 = aσ(a)−1Mσ(M)−1.

This observation will be relevant when we prove the converse of the above
cocyle construction, which is the main result of this section.

Theorem 2. Let E ⊇ K be a Picard–Vessiot extension with differential Galois
group G, and let PGLn(C) be represented as the group of inner differential
automorphisms of (Mn(E), ( )′). Then there is a one to one correspondence
between K isomorphism classes of matrix differential K algebras trivialized by
E and homomorphisms G → PGLn(C) which, as cocycles in Z1(G, PGLn(E))
is a coboundaries.

In particular, if (Mn(K),D) is such a K algebra, with D = DP and F ∈
GLn(E) is such that P = F−1F ′, the corresponding cocycle is X 7→ σX where
σX = σD−1σ(X)σD and σD ∈ GLn(C) is σ(F )F−1; this cocycle is the cobound-
ary associated to F−1.

And if Λ : G → PGLn(C) is a cocyle which is the coboundary associated
to a matrix F−1, for σ ∈ G, let ρ(σ) = Λ(σ)Mn(σ) be the corresponding dif-
ferential automorphism of (Mn(E), ( )′) reducing to σ on the center. Then
Mn(E)ρ(G) = FMn(K)F−1. Let Q = F−1F ′. Then Mn(K) is DQ stable, and

TF−1 : (Mn(K),DQ) → (Mn(E)ρ(G), ( )′)

is an isomorphism, (Mn(K),DQ) is trivialized by E, and Λ is the associated
cocycle.

Proof. The main assertion of the theorem follows from the two particular as-
sertions. The first one is established in Proposition (3). For the second, we
introduce the following notation: let Λ(σ) be given by inner automorphism by
C(σ) ∈ GLn(C). Then Λ being the coboundary associated to F−1 means that
F−1σ(F ) = dσC(σ) for some dσ ∈ E. We usually write this as σ(F ) = dσFC(σ).
Since

ρ(σ)(X) = Λ(σ)(σ(X)) = C(σ)σ(X)C(σ)−1,

we have
FC(σ)σ(X)C(σ)−1F−1 = σ(FXF−1), or
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TF (ρ(σ)(X)) = σ(TF (X)).

Thus X is ρ(G) invariant if and only if TF (X) is G invariant (under the coor-
dinate action). Since the G invariants of Mn(E) under the coordinate action is
Mn(K), we have that F−1Mn(K)F = Mn(E)ρ(G). Let S = F−1 and consider
the isomorphism TS : Mn(K) → Mn(E)ρ(G). Let D0 denote ( )′ on Mn(E)
restricted to Mn(E)ρ(G). By transport of structure, we define a derivation D on
Mn(K) by D(X) = TS ◦D0 ◦TS

−1. Then D(X) = F−1(FXF−1)′F . Expanding
and simplifying, we have that D(X) = X ′+F−1F ′X−XF−1F ′. Thus D = DQ

where Q = F−1F ′. (We note here that Q is not necessarily in Mn(K), although
we must have Q = aIn + P for some P ∈ Mn(K) and a ∈ E.) By construction,

TS : (Mn(K),DQ) → (Mn(E)ρ(G),D0)

is an isomorphism. That (Mn(K),DQ) is trivialized by extending scalars to
E follows either from Proposition (2) or directly from the observation that
Mn(E)ρ(G)E = Mn(E). Finally, the associated cocycle is produced from S by
the equations σ(S) = σDS. Also, we have σ(F ) = dσFC(σ). Since S = F−1,
we conclude that C(σ) = d−1

σ σD, and hence that C(σ) and σD−1 produce the
same inner automorphism, and hence the that the associated cocycle is Λ.

5 Example: K = C

As we noted in the introduction, there can be non–trivial differential Azumaya
algebras even in the case that K is algebraically closed. We consider now the
case where K = C is algebraically closed and has trivial derivation. In this case,
by Proposition (2), (Mn(C),DP ) is isomorphic to (Mn(C),DQ) if and only if
there is H ∈ GLn(C) and b ∈ C such that H−1QH = P + bIn. If we let
V Mn(C) denote Mn(C)/KIn, and let GLn(C) act on V Mn(C) by conjugation,
then isomorphism classes of differential matrix algebras correspond to GLn(C)
orbits in V Mn(C). These orbits in turn correspond to C matrices in Jordan
canonical form, up to the usual permutation of their Jordan blocks and scalar
translation of their eigenvalues.

Note that, in particular, these orbit spaces are infinite. Moreover, we claim
that we have an injection

V Mn(C)/GLn(C) → Brdiff(K).

This follows from stabilization: there is a map V Mn(C) × V Mm(C) →
V Mnm(C) induced from (P,Q) 7→ P ⊗ Im + In ⊗ Q corresponding to tensor
product of differential matrix algebras. These are compatible with the GL(C)
conjugation action. Tensor product with the trivial algebra corresponds to
combining with the identity matrix, or (P, I) 7→ P ⊗ Im + In ⊗ Im. Since
In ⊗ Im is scalar, therefore trivial in Vnm(C), this amounts to P 7→ P ⊗ Im.
As usual, we call this map Vn(C) → Vnm(C) stabilization. If P1, P2 ∈ Mn(C)
determine the same element of the differential Brauer group, then they become
equal after some stabilization, so that P1 ⊗ Im and P2 ⊗ Im are conjugate up
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to scalar translation. We can order bases so that matricially Pi ⊗ Im is in
block diagonal form with m diagonal blocks each equal to Pi. If each Pi is in
Jordan form, so is Pi ⊗ Im, and it follows that the latter being conjugate up
to scalar translation means that, up to scalar translation, P1 and P2 have the
same Jordan blocks with the same mulitplicities, and hence determine the same
element of V Mn(C). Hence the injection to the differential Brauer group.

6 Splitting Differential Azumaya Algebras

Let (A,D) be a differential Azumaya algebra over K. There is a finite Galois
extension K1 ⊇ K such that A⊗K K1 is a matrix algebra [6, Cor. 7.8, p. 47].
Also, K1 carries a unique derivation making it a Picard–Vessiot extension of K,
so that (A,D)⊗K K1 is a differential matrix algebra over K1. By Corollary (1),
there is a Picard–Vessiot extension E1 ⊇ E such that this differential matrix
algebra is trivial over E1. We want to show now that E1 can be embedded
in a Picard–Vessiot extension E ⊇ K, so that (A,D) ⊗K E is a trvial matrix
differential algebra.

The algebra (A,D) plays no role in the construction of E: we simply need to
know that a Picard–Vessiot extension of a finite Picard–Vessiot extension can
be embedded in a Picard–Vessiot extension. This is obvious if both are finite
(and false if neither is).

Proposition 4. A Picard–Vessiot extension of a finite Picard–Vessiot extension
can be embedded in a Picard–Vessiot extension.

Proof. Let E1 ⊇ K1 and K1 ⊇ K be Picard–Vessiot extensions, with K1 ⊇ K
finite. We suppose that E1 ⊇ K1 is Picard–Vessiot for the linear operator
L1 = X(m) +an−1X

(m−1) + · · ·+a0X
(0) with ai ∈ K1. For each σ ∈ G(K1/K),

we let Lσ denote the operator obtained from L by applying σ to the coefficients
of L. Let K2 denote a Picard–Vessiot closure of a Picard–Vessiot closure of K [4,
Notation 2, p. 162]. Inside K2, we may consider a Picard–Vessiot extension Eσ

of K1 for Lσ (when σ is the identity, Eσ = E1), and we let M be a compositum
of Eσ, σ ∈ G(K1/K). Then M is a Picard–Vessiot extension of K1. We are
going to show it is a Picard–Vessiot extension of K.

We begin by showing it is normal. Let τ be a differential automorphism of K2

over K. Then τ stabilizes K1, so that the restriction τ |K1 is some σ ∈ G(K1/K).
Let Vσ = L−1

σ (0). If v ∈ V1, L1(v) = 0 implies that τ(L1(v)) = Lσ(τ(v)) = 0, so
that τ(V1) = Vσ. This implies that τ(E1) ⊆ M , and similar reasoning applied
to the other solution spaces implies that τ(M) = M .

Since M ⊇ K and K1 ⊇ K are both normal subextensions of K2 ⊇ K. we
have surjections G(K2/K) → G(M/K) and G(K2/K) → G(K1/K) [4, Lemma
20, p. 163], which implies that G(M/K) → G(K1/K) is surjective as well. Note
that the kernel of this latter is G(M/K1).

Now let W ⊂ K1 be a finite dimensional C vector space stable under
G(K1/K) and generating K1 linearly over K, and let V = W +

∑
σ Vσ. Then

M is differentially generated over K by V . Any τ ∈ G(M/K) stabilizes W and
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permutes the Vσ’s, so that V is G(M/K) stable. Since the fixed field of K2

under G(K2/K) is K (this is a consequence of [4, Lemma 20, p. 163]; see [3, p.
17]), that of M under G(M/K) is K, and now [2, Prop. 3.9, p. 27] implies that
M is a Picard–Vessiot extension of K.

As a corollary, we deduce the existence of Picard–Vessiot splitting fields:

Corollary 2. Let (A,D) be a differential Azumaya algebra over K. Then there
is a Picard-Vessiot extension E of K such that (A,D)⊗K E is a trivial matrix
differential algebra over E.
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