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ABSTRACT. We present a new approach to the efficient computation of polyno-
mial approximations to inverse transcendental functions of polynomials based on
the modified arithmetic-geometric mean of Borchardt, Gauss, and Carlson. We
carry out a systematic comparison with the line integration method of Debuss-
chere et al. Our results indicate that this new method is essentially identical in
accuracy to the line integration method. However, it is found to be significantly
more efficient than line integration for computations of the arcsine, comparable in
cost for the argtangent, while the relative efficiency of the new method and line
integration on the logarithm is problem dependent.

1. INTRODUCTION

In the spectral approach to uncertainty quantification (e.g.,[7, 15]), the stochastic
behavior of a system is approximated by a polynomial in the stochastic variables.
Such a representation is often called a polynomial chaos expansion (PCE). In ev-
ery intermediate stage of a calculation, the result is approximated by a PCE. The
elementary operations of addition, subtraction, multiplication, and division in-
volving truncated PCEs are easily carried out through closed-form calculations
on the PCE coefficients; square roots (defined appropriately) may be computed
very efficiently by Newton’s method. However, computation of the elementary
transcendental and inverse transcendental functions of PCEs is not such a sim-
ple matter. More precisely: it is the computation of PCE approximations to the
elementary functions of PCEs that concerns us here. Hereafter, phrases such as
“computing elementary functions of PCEs” should be understood as referring to
computing PCE approximations to elementary functions of PCEs.

Debusschere et al. [5] have recently surveyed methods for computing elemen-
tary functions of PCEs. The usual methods of computing numerical values of
elementary transcendental functions on R through piecewise polynomial approx-
imations are usually not applicable for PCE computations, because such methods
do not produce a single polynomial applicable over an interval (and thus usable
in subsequent PCE calculations). Furthermore, the Taylor series for the inverse
transcendentals have limited radius of convergence and therefore are not useful;
a logarithm or arctangent, for instance, cannot be approximated by a Taylor poly-
nomial in cases where the support of the stochastic variable’s distribution extends
beyond the radius of convergence. Computation by nonintrusive spectral projec-
tion (NISP) [6, 13] in more than a few stochastic dimensions requires the expensive
approximation of high-dimensional integrals by cubature. Additionally, as we will
1
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see below, NISP encounters even more critical difficulties when applied to certain
of the inverse transcendentals with truncated arguments.

To sidestep these difficulties, [5] introduced a method based on integral and differ-
ential equation definitions of the elementary transcendentals. The forward tran-
scendentals are defined by differential equations, the inverse transcendentals by
integrals. For example, the arctangent of a PCE u (&) is defined by the integral

) 1 dt
1) an” (@) =u(@) [ o
This representation is exact; in practice, two approximations are made. First, the
rational integrand is approximated by a PCE; second, the integration is done by
quadrature with a PCE reciprocal done at each quadrature point. Though quadra-
ture is still used, this integral is one-dimensional resulting in a considerable sim-
plification over the multidimensional integrals encountered in NISP.

We introduce in this paper a quadrature-free approach to computation of inverse
transcendentals of PCEs through iterated means. Though new to the world of PCE
computation, the method of iterated means is a very old idea with important algo-
rithms developed by Borchardt and Gauss in the 19th century and Archimedes in
the 3rd century BCE[10]. The surprisingly rich history — dating back to Archimedes
— of this and similar variants of iterated means is outlined in an expository arti-
cle by Miel[10]. In the 1970s these algorithms were improved by Carlson[4] and
Brent[3] for use in extended-precision calculation of inverse transcendentals on R
and C. At the heart of these methods lies the Borchardt-Gauss (BG) iteration

1
(123) ﬂn+1 = E (an +gn)

(1.2b) In+1 = Van+18n

with starting values a9 > 0 and go > 0. By appropriate choice of starting values
and postprocessing steps, this basic BG iteration can be used to compute any of the
elementary inverse transcendentals. This iteration is a variant of the better-known
arithmetic-geometric mean (AGM) iteration used by Gauss for his development of
the theory of elliptic integrals; the AGM has ,/a, g, instead of ,/a,,;1g, in (1.2b).
We will see that the BG iteration converges linearly with a contraction constant
of % and thus is too slow to be a practical method; however, Carlson showed that
embedding the BG iteration in a simple Richardson extrapolation scheme acheives
linear convergence with a contraction constant ~ 1073, sufficiently small to pro-
duce a practical method. We’ll refer to the Borchardt-Gauss iteration as accelerated
by Carlson’s method as the BGC iteration.

Brent [3] has developed algorithms based on the AGM and asymptotic relations
between the elliptic integrals and elementary functions that are quadratically con-
vergent on the reals. These algorithms and their descendents are among the most
efficient known for ultra high precision computations on the reals, and may be
worth investigating for use with PCEs. In this paper we are concerned only with
the BG and BGC algorithms.

Because the BG and BGC algorithms use only the arithmetic operations and the
square root (all of which are efficiently computable on PCEs), and because (as will
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be discussed below) the algorithm retains its accuracy over the entire real line,
the potential for use in computation in a PCE setting is clear: one carries out the
iterative procedure above not pointwise on a single real number, but on a PCE.
However, simply porting an algorithm from R to a general Hilbert space does
not necessarily work, so theoretical and practical issues need to be addressed. In
particular, the usual convergence proofs for the BG iteration depends on properties
specific to IR or C, so we will need to develop a convergence theory appropriate to
PCE:s in a Hilbert space. Furthermore, the square root operation must be handled
carefully when working with truncated PCEs.

A preliminary investigation of this method was carried out by one of the authors
(McKale) in an unpublished Master’s thesis [9]. This paper extends that work with
systematic numerical experiments and a first look at issues of convergence. We
begin with a brief survey of the BG and BGC iterations on IR and the connection
to the inverse transcendentals. Next, we look at the question of an appropriate
definition of the square root operation on PCEs, arguing that a weak definition of
a square root should be used. We show that with this weak square root, the BG
iteration applied to PCEs converges linearly in a weak sense, and furthermore, that
Carlson’s acceleration method is applicable to the PCE setting. Finally, we examine
the asymptotic complexity of the BGC algorithm and the line integration method,
and carry out numerical experiments to compare the efficiency and accuracy of
these methods.

1.1. Notation. The formalism of polynomial chaos expansion is well described
elsewhere[15, 7]. It is usually developed in the setting of probability, but for our
purposes we can simply work in the setting of approximation of functions. Let ()
be a subset of RP. We use the symbol ¢ to represent coordinates on Q. We consider
real-valued functions defined on Q, and introduce an inner product (-, -) and L?
norm ||-||. We then construct an orthogonal basis {;};-, and introduce the triple
product coefficients

Cijk = (i, i) -

With the usual choice i (§) = 1 we have c;jp = 0 when i # j. Furthermore, c;j is
invariant under permutation of indices.

We are interested in compositions f o u, where f is an elementary inverse transcen-
dental and u (¢) a polynomial. Though the methods of this paper are applicable
to all seven inverse transcendentals (the inverse trigononometric and hyperbolic
functions and the logarithm) we will concentrate primarily on three of the inverse
transcendetals: the arctangent, the arcsine, and the logarithm. In the spectral ap-
proach to stochastic computation both the input to, and output of, a function f are
represented by infinite linear combinations of basis functions ;,

(1.3) u(g) = i”ilpi (¢)
i=0

(L4) )= ifﬂpi ©.
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In practice, we work with sums that are truncated; for simplicity, we will assume
throughout that the series for u and f are truncated at the same order N. We will
refer to these series as polynomial chaos expansions.

1.2. Current methods for inverse transcendentals. We briefly review two current
methods for computing inverse transcendentals of PCEs.

1.2.1. Nonintrusive projection. Perhaps the most straightforward approach to com-
puting a spectral approximation to f (u (¢)) is non-intrusive spectral projection
(NISP). In this method, the generalized Fourier coefficients

(1‘5) = szO / f )dl’t

are computed by numerical integration; here y represents a probability measure.
Since the space () can have high dimension, the curse of dimensionality can make
this a forbiddingly expensive calculation. However, a more fundamental concern
for certain inverse transcendentals is the evaluation of the integrand itself. The
difficulty is that the composition of f with a truncated spectral representation of u
may not be computable throughout Q). If f cannot be computed at all quadrature
points, the NISP method fails.

Let f: 1 F— R be a real-valued function defined on an interval I ¢ C R, and un-
defined outside that interval; the square root, logarithm, and arcsine are familiar
examples (with domains of definition [0, o), (0, o), and [—1,1] respectively) that
are relevant to the central topic of this paper. If we consider composition of f
with a function u : (3 — I, we encounter no difficulties as long as the method of
computation of u respects the restriction of its range to Ir. Unfortunately, spectral
methods do not generally respect such restrictions.

As an illustrative example, consider the logarithm of the function

1

8
100 6

(1.6) u(g) =
is clearly positive for all ¢ € RR; however, its best L? approximation (using the
uniform inner product) on the quartics is

(1.7) () = 42; 5 (630005 — 2800022 + 1929)

which dips below zero on the interval ~ [0.292,0.599] and its reflection on the
negative real line. Any NISP calculation having a quadrature point in that interval
will fail.

Such examples are easily constructed, so this mode of failure is by no means re-
stricted to isolated pathological cases. The NISP method cannot be considered
a reliable method for functions with restricted domains such as the square root,
logarithm, or arcsine.
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’ Function \ Integral definition ‘

tan! (u(@) | w(@)fo ;0

- 1 1 dt
sin™ (u(8)) | u(d) [y N
T
log (1 (§)) | (@) =) Jo rdy
TABLE 1. Summary of cost results for stochastic arctangent, arc-
sine, and logarithm computed by the line integration and BGC
methods. The costs are reported in terms of the coefficient of M3.

| Function | Relation to BG mean | Domain of applicability |

arctan (x) m —00 < x < 00
arcsin (x) m -1<x<1
arccos (x) ‘é%;{‘)z 0<x<1
tanh ! (x) m -1<x<1
sinh T (x) m —00 < x < 0
cosh™ (x) ‘éi‘;;; x>1
log (x) B(g’x) x>0

TABLE 2. The inverse transcendental functions in terms of the
Borchardt mean B (-, ). Adapted from Miel [10].

1.2.2. Line integration. The line integral method of [5] computes inverse transcen-
dentals in terms of their integral definitions, transformed to one dimensional in-
tegrals. The integrands are rational or algebraic functions of PCEs, which are ap-
proximated by truncated PCEs using algebraic operations described below. In
practice the integrals are computed by quadrature, which means that those PCE
operations must be performed at each quadrature point.

2. THE BORCHARDT-GAUSS ITERATION

The BG iteration for the inverse trigonometric functions can be understood in a
simple way as recursive application of the half-angle identities, progressively re-
ducing the argument so that a small-angle approximation becomes increasingly
accurate. The reader is referred to Miel [10] or Acton [1] for an elementary deriva-
tion.

We establish some simple convergence results. The convergence theory for BG
iteration on the reals is presented in Miel [10], and the most pertinent conclusions
are summarized in theorem 1 below. However, we are interested in applying BG
iteration to functions, and need to address the issues of convergence in norm and
pointwise convergence.



6 K.R.LONG, K. D. MCKALE AND L. JUAN

Theorem 1. We are given fixed real numbers ag > 0 and gy > 0. Then the iteration

1
(.1) i1 = 5 (an + gn)
(22) Snt1 = /8nfint1

converges to the limit

Vv
80— 0<ag<go

cos~!(ag/g0)
(2.3) B (Clo,go) = ap ap = 80
V-85

cosh a0/ 30) 0<go<ag

When ay # go # 0, the sequence of iterates obeys one of the inequalities
0<gn <8gnt1 <app1 <ay (case0 < go < ap)
0<ay <apy1 < gny1 < gn (case0 < ap < go)

Proof. The verification of the inequalities follows easily from the iteration. For a
proof of the limit, see [10]. O

Next, we look at convergence of BG iteration on functions. Our first result is that
for suitable starting values defined on a compact domain, convergence is uniform.

Theorem 2. Let Q) be a compact subset of RP, and suppose ag : Q — Rand 79 : QO — R
are continuous functions that obey the inequalities ny > 0, o > 0 throughout Q). Then
the iteration

@4 i1 (1) = 3 (@0 () + 70 (1)

(2.5) Y1 (X) = 4/ Tn (%) @np1 (%)

converges uniformly to B (ag (x),vo (x)).

Proof. From theorem 1 we have pointwise convergence of BG iteration to the limit
B (g (x),70 (x)) for every x € Q. That limit is a continuous real-valued function
throughout Q). Introduce the functions

(2.6) Ly (x) = min (&, (x),7n (X))

(2.7) Uy (x) = max (&, (x),7n (x))
and see from the inequalities in the conclusion of 1 that L,, converges monotoni-

cally from below while U;, converge monotonically from above. Uniform conver-
gence follows from Dini’s theorem [14]. O

Finally, the result on convergence rate easily extends from the reals to a Hilbert
space.

Theorem 3. Let Q) be a subset of RP, and suppose ag : QO — Rand 79 : Q — R are
L? (Q) and obey the inequalities ag > 0, g > O throughout Q. Let ay, 7y be iterates of
1.2a and 1.2b. Then the quantity ||a2 — v3||,» — 0 linearly with contraction constant .
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Proof. Do an elementary calculation with the recurrence relations to find that

1
28) 02— =7 (F-13)

pointwise. O

While it is useful to have these theorems in hand, it’s important to understand that
they don’t apply directly in practical PCE calculations. The theorems assume that
the products and square roots are computed exactly, while in practical PCE com-
putations they are always truncated. Indeed, with truncated PCE the conditions
®p > 0 and yp > 0 may even be violated pointwise. A full study of convergence
of truncated PCEs is beyond the scope of this exploratory paper. Finally, note that
theorem 2 does not apply to PCEs set in non-compact domains such as the Her-
mite polynomial basis and Laguerre basis: we cannot expect uniform convergence
of BG iteration in such cases (this question is distinct from the well-known issue
of non-uniform convergence with polynomial degree).

In practice, we use not the BG iteration but the BGC iteration. As a Richardson
extrapolation of the sequence of BG iterates, the limit is unchanged.

3. BORCHARDT-GAUSS ITERATIONS ON PCE

3.1. Computation of the square root. The square root is of fundamental impor-
tance in the BG and BGC algorithms. However, its computation on a space of PCEs
is not entirely straightforward so the question of its robust and efficient calculation
bears some discussion here. Consider /g where ¢ : () — R is nonnegative on (),
with PCE representation

(3.1) g (@) = io g (©).

The expansion coefficients g; are computed through orthogonal projection. In
practice, however, the expansion is truncated at some maximum index N, and
as seen above, this raises the possibility that the square root of the truncated poly-
nomial will not exist pointwise. Therefore NISP is unsuitable for square root cal-
culations.

To circumvent this difficulty we define the square root /g in a weak sense. Let
VN be the span of the basis polynomials {y;}. We define /¢ to be the real, non-
negative solution r to

(3.2) (v, P g) =0 Voe VN,

which need not require non-negativity of ¢ at every point in (). This is a system of
nonlinear algebraic equations for the PCE coefficients r;,

N N
(3.3) Z Z Ciritk — cigi =0, i=0,1,---,N,
j=0k=0
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FIGURE 3.1. Comparison of exact g ({) (solid line) and its quartic
truncation ¢ (¢) (dashed line), zooming on a region near the hor-
izontal axis to highlight the negative values resulting from trun-
cation. The approximation was computed on the interval [—1,1],
but only the positive half is shown here.

where g; are the PCE coefficients of g. This system can be solved approximately
by Newton’s method, with the step d7; given by the linear equation

N N
(3,4) E 2 Cijkr](f) (F](n) + 251’]') + Ciin&i = 0.
j=0k=0

Discussion of existence of weak square roots real solutions to 3.3 is in order. Ide-
ally, we would like a theorem ensuring that a best L2 polynomial approximation
to any nonnegative function will have a weak square root that is real and non-
negative; however, we know of know such theorem. A theorem by Barvinok [2]
shows that there is an algorithm, polynomial time in N, for determining whether
systems of quadratic equations such as3.3 have real solutions. An open question
in real a;gebraic geometry is whether the highly structured form of 3.3, in which
the coefficients c;j are known to be triple products of orthogonal polynomials, can
be exploited to provide an existence theorem for weak square roots.

Though we have to date been unable to prove existence of real, nonnegative weak
square roots, in none of our experiments were failures to solve 3.3 found.

3.2. Cost estimates. The cost of a BGC iteration is determined by the cost of the
three operations involved: addition, multiplication, and the square root. The line
integration method uses division in addition to these, so looking ahead to com-
parison between BGC and line integration we estimate the cost of division as well.

We'll assume dense linear algebra throughout, and disregard all but the leading
order terms. Let M = N 4 1 b the number of PCE coefficients in the expansion of
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FIGURE 3.2. Comparison of the exact square root of g (¢) (defined
in equation 1.6)and two methods of approximation. The exact
square root of the exact g is shown with the solid line. The point-
wise square root \/§ is shown with the dashed line; it fails to exist
in the interval where the truncated approximation ¢ is negative.
The weak square root is shown with the dotted line.

¢ and its weak square root 7. At the n-th Newton step, the residual vector
3 e 1))
(3.5) Ciin&i + Z(:)kz CijkTj T
]': =0

must be formed, at a cost %M3 flops. The Jacobian
S0
(3.6) 2) cipry
k=0

is formed at each Newton step at a cost 2M3 flops. The cost of a solve is dominated
by factorization at %M3 flops, so each Newton step costs %M3 ~ 4M? flops.

The costs of the operations of addition, subtraction, multiplication, and division of
PCEs should also be computed. Addition and subtraction are both O (M) and can
be considered free compared to the other operations. Multiplication of two PCEs
is done as

1=

N
(3.7) (uv)i = 2 cijku]-vk
j=0 k=0

]

and requires 3M? flops (or half that for the important case u = v where symmetry
can be exploited). Division of two PCEs g = u/v is done implicitly by forming
and solving the system

N
(3.8) Y cijkqivx = ciioti
j=0k=0
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] Operation |  Cost (M°) |
Addition/subtraction 0
Multiplication 3 (% for a square)
Division g
Square root % Nnewt

TABLE 3. Costs of the four arithmetic operations and the square
root in units of M3, where M is the number of PCE coefficients and
Nnewt is the number of Newton iterations needed in a square root
calculation. In the square root cost estimate, the exact coefficient
% is approximated by 4.

| Function | Integraldefiniton |  LlIcost/M? | BGCcost/ M
tan—1 (1 (&)) u(@) fo o 3+ZNg (NpGc + 1) Nyewt +1

5
3
sin™! (u(8)) u (@ fy ﬁ 3+ 2 (14 Nnewt) Ng | 3 (Nage +1) Nyewt +1

log (u(8) | (@) 1) fy rrri—m 3+ 5N 3 NG Nyewr +1
TABLE 4. Summary of cost results for stochastic arctangent, arc-
sine, and logarithm computed by the line integration and BGC
methods. The costs are reported in terms of the coefficient of M3.
Ng is the number of quadrature points, and Npjew¢t is the num-
ber of Newton iterations needed in the computation of the weak
square root.

for g;. Forming the system requires 2M? flops, and solving it takes %M3 flops for
a total cost of %M3 .

3.2.1. Cost of line integration. For comparison to BGC, we also provide cost esti-
mates for the line integration method. The cost will depend on the number of
quadrature points required. The arctangent requires a square (%M3) and a re-
ciprocal (%M?’) at each quadrature point, plus one multiply (3M?) after summa-
tion. The arcsine requires a square (3M?), a reciprocal (§M3), and a square root
(2 NnewtM?) at each quadrature point, plus one multiply (3M?) after summa-
tion. The logarithm requires a reciprocal (%M3 ) at each quadrature point, plus
one multiply (3M?) after summation.

The costs of BCG iteration and line integration (LI) are summarized in table 4. The
actual costs must be measured experimentally, because we cannot predict in ad-
vanced the number of quadrature points for line integration, number of Newton
iterations for the square root, and number of BGC iterations needed for conver-
gence.

4. NUMERICAL EXPERIMENTS

The BGC and line integration algorithms were implemented in C++ using the
Stokhos [11] package of the Trilinos [8] suite. The Stokhos square root function
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is implemented using NISP, so we wrote a replacement square root the computes
the weak square root with Newton’s method. Our software implementation was
instrumented to accumulate the cost of the elementary operations on PCEs based
on the asymptotic costs estimates for each elementary operation.

A series of experiments was designed to compare the accuracy and efficiency of
the line integration and BGC methods as applied to the logarithm, arctangent,
and arcsine. In all experiments, the only distribution considered is the uniform
distribution on [—1, 1]. The basis functions are the Legendre polynomials.

In each experiment, the BGC iteration is compared to two implementations of the
line integration method, differing by virtue of different quadrature methods. The
first line integration method, which we’ll call “adaptive,” uses an adaptive 7/15
point Gauss-Kronrod method [12] with recursive local subsectioning. This is rep-
resentative of many simple accuracy-controlled black box methods. The second
line integration method, which we’ll call “prescient,” tries a sequence of Gauss-
Legendre rules with increasing order until a desired tolerance is reached, and then
records only the cost of the final rule. By ignoring the cost of the trial integrations,
the cost of our “prescient” method represents the cost an integration procedure
in which a user has sufficient prescience to choose in advance, for each and ev-
ery problem, exactly the right Gauss-Legendre rule to reach a desired accuracy
with minimum work. The logic behind our choice of these two methods is that an
adaptive scheme tailored to these problems can no doubt be more efficient than
our simple adaptive method but is unlikely to do quite as well as the “prescient”
method. Therefore, we consider that a good implementation of the line integration
method will lie somewhere between these two methods in efficiency.

In the first set of experiments, outlined in table 5, functions are evaluated on four
intervals whose endpoints are listed in the table. Experiments A, involve the log-
arithm, B, the arctangent, and C,, the arcsine. For each function, the intervals are
chosen to range from unchallenging (interval size small compared to the curvature
of the function) to challenging (large interval size in the case of the arctangent, or
approaching a domain endpoint in the case of the logarithm or arcsine). Mapped
back to the standard interval [—1, 1] for the uniform distribution, we can consider
each of these experiments to apply to a composition of an inverse transcendental
with a first degree polynomial.

In the second set of experiments, compositions with nonlinear functions are con-
sidered. For each of the three inverse transcendentals under study, a simple fam-
ily of nonlinear functions is listed in table 6. The functions are chosen to produce
curves that are difficult to fit with low-degree polynomials, and in the case of the
logarithm and arcsine, to push close to a domain boundary.

In all experiments, the three algorithms (BGC, LIM/adaptive, and LIM/prescient)
were run with two convergence tolerances: T = 107> and T = 10~ 1. For each case,
the polynomial degree was varied from 4 to 32 in steps of 2. For each case, we plot
the following: (a) L? norm of the error versus PCE degree, (b) computational cost
versus PCE degree.

4.1. Accuracy and convergence. The L? error is plotted against PCE degree for
experiments A, B, and C in figures 4.1 and 4.2 (convergence tolerance 105 ) and in
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eriment ID A, B, C,

09,1] | [0.9,11] | [04,0.6]
05,1] | [05,15] | [-05,05
0.L,1] | [-1,2] | [-05,09
0.01,1] | [=5,10] | [-0.5,0.99]

—1 .1

log tan sin

unction
TABLE 5. Experiments with linear arguments. In this set, cases
labeled with higher indices have intervals that are more compu-
tationally challenging.

\»wma

| Experiment ID | Function \
Dy log (ﬁ + xp)
E, tgn:ll (4919— 8xP)
F sin (W —xP )

TABLE 6. Experiments with nonlinear arguments. Cases with p =
2 and p = 8 were run.

figures 4.3 and 4.4 (convergence tolerance 10~17). The results indicate that the BGC
and line integration methods are comparable in accuracy; the error curves differ
significantly only after the desired tolerance has been exceeded. The adaptive
quadrature method used seems to overconverge, systematically producing higher
accuracy than requested. All three methods converge superlinearly with degree,
until desired tolerance is reached.

Similar results are found for experiments D,E,F, as shown in figures 4.5 (tolerance
107°) and 4.6 (tolerance 10~ '%). Again, convergence is superlinear until the desired
tolerance is reached.

Examples of BGC approximations (tolerance 10~°) in experiments D, E,F are shown
in figure 4.7. As can be seen, the difficult feaures such as cusps and plateaus are fit
well.

4.2. Cost measurements. Our software implementation was instrumented to ac-
cumulate the cost of the elementary operations on PCE based on the asymptotic
costs estimates for each elementary operation. We chose this approach over tim-
ings in order to compare efficiency of algorithms rather than efficiency of particu-
lar software implementations.

While the BGC and line integration methods are comparable in accuracy, they are
quite different in efficiency. Which method is more efficient depends on the func-
tion considered. Our cost estimates suggest a clear efficiency advantage for the
BGC in the computation of arcsines, but no clear difference for the arctangent and
logarithm. For accurate cost computations, the actual number of Newton steps
and quadrature points required were measured in our experiments. As expected,
in all arcsine experiments it was found that BGC iteration was more efficient than
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FIGURE 4.1. Convergence results for experiment set ABC, inter-
vals 0 and 1, convergence tolerance T = 107°. Refer to table 5
for definitions of the functions used in these experiments. Results
from BGC iteration, adaptive quadrature, and prescient quadra-
ture are shown with crosses (x), circles (o), and plus signs (+)
respectively.

line integration. Results for the arctangent generally favor line integration. In no
case was BGC computation of the arctangent more efficient than line integration
with “prescient” quadrature, though with only a few exceptions (on very sim-
ple problems) it was more efficient than line integration with black-box adaptive
quadrature. Results for the logarithm were mixed, with prescient line integration
more efficient than BGC on the easier (more nearly linear) problems, and BGC
more efficient on the more nonlinear problems.
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FIGURE 4.2. Convergence results for experiment set ABC, inter-
vals 2 and 3, convergence tolerance T = 107°. Refer to table 5
for definitions of the functions used in these experiments. Results
from BGC iteration, adaptive quadrature, and prescient quadra-
ture are shown with crosses (x), circles (o), and plus signs (+)
respectively.

5. CONCLUSIONS

We have investigated the application of the Borchardt-Gauss-Carlson method of
iterated means to the computation of inverse transcendental functions of poly-
nomials. This method provides an approximation that is accurate over a wide
range of argument, and furthermore bypasses difficulties with restricted domain
that appear when applying non-intrusive projection to compositions of some in-
verse transcendentals with polynomial approximations. We have analyzed the
convergence of the method only in the simplified case in which truncation of the
polynomial approximations is ignored.

The cost of the method is dominated by the need to compute a square root of a
PCE at each iteration. With Carlson’s acceleration, we find experimentally that
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FIGURE 4.3. Convergence results for experiment set ABC, inter-
vals 0 and 1, convergence tolerance T = 1070, Refer to table 5
for definitions of the functions used in these experiments. Results
from BGC iteration, adaptive quadrature, and prescient quadra-
ture are shown with crosses (x), circles (o), and plus signs (+)
respectively.

each iteration reduces the error by about 1073, so only a few iterations are needed
for acceptable accuracy. We find that for a specified convergence tolerance in com-
putation of the coefficients, the accuracy of the PCE coefficients computed by BGC
iteration and by line integration are nearly identical, with no systematic favoring
of either method.

Based on our timing results, we recommend that BGC iteration be considered the
method of choice for the arcsine. The reason is the square root in the integrand,
making each quadrature point roughly as expensive as a single BGC step. We
anticipate that this conclusion will pertain to all four of the elementary transcen-
dentals that involve square roots in their integral definitions: arcsine, arccosine,
arcsinh, and arccosh. We note also that improvement in linear and nonlinear
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FIGURE 4.4. Convergence results for experiment set ABC, inter-
vals 2 and 3, convergence tolerance T = 1070, Refer to table 5
for definitions of the functions used in these experiments. Results
from BGC iteration, adaptive quadrature, and prescient quadra-
ture are shown with crosses (x), circles (o), and plus signs (+)
respectively.

solver algorithms for square root computation will impact both classes of meth-
ods equally.

For the arctangent, BGC iteration is systematically less efficient than line integra-
tion with our artificially prescient quadrature method, though it usually outper-
forms line integration with a black-box adaptive algorithm. Whether BGC or line
integration should be used will apparently depend on whether suitable quadra-
ture routines can be found.

For the logarithm, neither BGC iteration or line integration is clearly superior in
all circumstances. Further investigation is needed to devise an adaptive algorithm
that will choose a method based on properties of the argument.



FAST INVERSE TRANSCENDENTALS OF POLYNOMIAL CHAOS 17

Experiment D, (t=10"°) Experiment Dg (7=10"°)
1 : : : : : 19‘ : : : : :
<] @ ] 5] ©
° 0.1 9&999999 ° 0.1 e g
. 001 Qg . 001 Reg
°© °© Re
0.001 0.001 [
§ _4 § 4 Re [
5 10 5 10 ® ¥
~ 107° ~ 107° ]
- -
. e
5 100 15 20 25 30 5 100 15 20 25 30
N N
Experiment E, (t=10"%) Experiment Eg (7=10"%)
1 : : 1 : : : :
<] ® <] ee
5 O ®$®@®@ 5 O %®®®®®®@®
. 001 28 gy . 001 B q
S} Ry g S}
c 0.001 c 0.001
S 1074 S 1074
o o
~ 107° ~ 107°
- -
1078 1078
5 100 15 20 25 30 5 100 15 20 25 30
N N
Experiment F, (7:10’5) Experiment Fg (7:10’5)
1 1
g ol S o1
D00l " ®eg 3 oo g
1<) Pog, 1<) 2 @
g 0001 “eogg g 0001 ee
S 1074 E S 1074 2oa 4
+ 4+ + + +
~ 107° ] ~ 107° LK & ]
2078 b 10 6 B8
5 10 15 20 25 30 5 100 15 20 25 30
N N

FIGURE 4.5. Convergence of L? norm of error with polynomial
order N in experiments D,E,F with p = 2 and 8 and tolerance T =
1072, Refer to table 6 for definitions of the functions used in these
experiments. Results from BGC iteration, adaptive quadrature,
and prescient quadrature are shown with crosses (), circles (o),
and plus signs (+) respectively.

Finally, we note that iterated means are also applicable to certain special functions
such as elliptic integrals and certain hypergeometric functions. This class of meth-
ods may prove useful for PCE approximations to those functions as well as the
elementary inverse transcendentals.
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8, convergence tolerance T = 10~°. Results from BGC iteration,
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