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Abstract. Differential modules over a commutative differential ring which
are finitely generated and projective as ring modules, with differential homo-

morphisms, form an additive category. Every projective module is shown to
occur as the underlying module of a differential module. All projective dif-

ferential modules are shown to be direct summands of differential modules

which are free as ring modules; those which are differential direct summands
of differential direct sums of the ring are shown to be induced from the subring

of constants. Every projective differential module is shown to have this form

after a faithfully flat finitely presented differential extension of the base.

1. Introduction

A differential module over a differential ring is a module equipped with an
(abelian group) endomorphism which satisfies a product rule (with respect to the
ring derivation) for scalar multiplication. These have been studied in many places:
for example [8], [7], [1]. Our focus here will be on those which are finitely generated
and projective as modules.

Later in this introduction we will summarize the results to be obtained in
this paper. But first we would like to reflect on the conceptual framework of our
investigation.

Just as a module over a commutative ring is a (concrete) representation of the
ring as endomorphisms of an abelian group, a differential module over a commu-
tative ring is both a representation of the ring as endomorphisms of an abelian
group and a representation of the derivation as an inner derivation given by a des-
ignated endomorphism of the group which stabilizes the image of the ring. This
stabilizing condition is strong and can be obscure: up to modification by endo-
morphisms which commute with the image of the ring, there can only be one. So
differential modules as representations may not be as useful as modules are in the
non-differential context. On the other hand, differential modules have proven to
be a useful context in which to examine differential equations. As we will recall
below, differential module structures on finitely generated free modules correspond
to (linear, homogeneous, monic, matrix) differential equations, and complete sets
of solutions of such equations correspond to module bases of constants. In the case
of a differential field, where all modules are free, this connection is covered in [8];
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see also [4] and the references therein. In this work, we aim to extend these notions
to projective modules.

Let R be a differential commutative ring with derivation D, and let P be
a differential R module, finitely generated and projective as an R module. The
quotient rule for differentiation implies that localizations of R are differential rings,
and in particular that the coordinate rings of the basic open subsets of Spec(R) are
differential. We can cover Spec(R) with finitely many basic open sets over each of
which P is free as an R module. Thus on these open sets the differential structure
is given by a differential equation which may or may not have a complete set of
solutions. If they all do, and they are compatible, then P is extended from a module
over the constants of R. We show that this happens if and only if P is a differential
direct summand of a differential direct sum of copies of R.

Just as in the field case, one can force a differential module whose underlying
R module is free of rank n to have a complete set of solutions by passing to a differ-
ential ring extension S ⊇ R which is a faithfully flat finitely presented augmented
R algebra (in fact as an algebra S = R⊗Z[GLn]). We show that every differential
projective module is a differential direct summand of a differential module whose
underlying R module is free and then use this to show that every differential pro-
jective module has a complete set of solutions in a faithfully flat finitely generated
extension of the above type. That differential projective modules are such direct
summands follows from our result that every projective R module carries a differen-
tial structure. Actually we prove this twice: first with a conceptual argument, and
then, for the case when the projective module is given explicitly, by a constructive
formula.

The classification of differential projective modules, like the case of ordinary
projective modules, is a question of K theory, which we describe formally. For the
special case of rank one projective modules, this description presents the differential
Picard group in terms of Pic(R) and a quotient of the additive group of R.

As a general reference to K theory of projective modules we cite [2].
Previous work of the authors [5] and the second author [7] have stressed the

case where R is a field, or more generally a simple differential ring. Under the as-
sumption of simplicity, every R finitely generated differential module is R projective
[1, Theorem 2.2.1] (or see the exposition in [7, Theorem 5]). Here we consider when
R is not necessarily a simple differential ring. Two important types of examples
which we will use include the case that R = C[x1, . . . , xn]f is the coordinate ring
of an affine open subset of complex affine space, with a suitable derivation, or that
R = O(C) is the ring of entire functions on the complex plane. This later object
has some properties which may not be as familiar as the former, so we will observe
them below.

2. Basics

Let R be a commutative ring with derivation D. The ring of twisted differential
polynomials over R, denoted R[X;D] is the R module R[X] (ordinary R polynomi-
als in one variable X) with associative, distributive multiplication determined by
the rule Xa = aX + D(a) for a ∈ R. By construction, R is a subring of R[X;D],
although R is not central in R[X;D] unless D is trivial (D = 0), and hence R[X;D]
is not usually an R algebra.
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A module over R[X;D] is called a differential R module. It is straightforward
to verify that a differential R module M is an R module with an additive en-
domorphism DM given by DM (m) = Xm which obeys the formula DM (am) =
D(a)m + aDM (m) for a ∈ R and m ∈ M ; and conversely. A homomorphism of
differential R modules is called a differential homomorphism. A differential homo-
morphism f : M → N between differential R modules is seen to be an R module
homomorphism that satisfies f(DM (m)) = DN (f(m)) for m ∈ M ; and conversely.
The category of differential R modules, being the category of modules over the ring
R[X;D], is an abelian category. A projective object in this category is, by defini-
tion, a projective differential module. A constant of a differential ring or module
is an element of derivative zero. The constants of R form a subring denoted RD;
the constants of a differential R module M form an RD submodule of M denoted
MD. For a differential module M , there is a map R⊗RD MD →M . If this map is
surjective, we say that M is constantly generated. If this map is an isomorphism,
we say that M is induced [from constants]. In Example 3 we show that constantly
generated need not be induced. Suppose that M is finitely generated free as an
R module and that it has an R module basis {x1, . . . , xn} consisting of constants.
Then it follows that for r1, . . . , rn ∈ R that D(

∑
rixi) =

∑
D(ri)xi from which it

is easy to conclude that {x1, . . . , xn} is an RD basis of MD and hence that M is
induced.

We fix the above notations.
A differential module may be finitely generated as an R module. For example,

this is true of R itself, using D for the endomorphism DR. However this is not true
for (nonzero) projective differential modules.

Proposition 1. Let P be a projective differential module finitely generated as
an R module. Then P = 0

Proof. Since P is R finitely generated, it is R[X;D] finitely generated, which
means that there is a differential surjection R[X;D](n) → P . Since P is projective,
this surjection differentially splits and P can be regarded as a differential submodule
of R[X;D](n). The projections pi : R[X;D](n) → R[X;D] are all differential. If
P 6= 0 then for some i pi(P ) is a nonzero R finitely generated differential submodule
of R[X;D]. Suppose g1, . . . , gk generate pi(P ) as an R module. Then any element

g ∈ pi(P ) is of the form
∑k
i=1 rigi. In particular, its degree in X is bounded. Let

f ∈ pi(P ) be a nonzero element with highest degree term amX
m where am 6= 0.

Since XamX
m = amX

m+1 + D(am)Xm, the elements Xf,X2f,X3f, . . . all lie in
pi(P ) and have strictly increasing degrees. This contradicts boundedness of degrees,
and hence we conclude that P = 0. �

Proposition 1 shows that there will be no interesting projective differential
modules that are finitely generated as R modules. We could go on to consider
all differential modules which are finitely generated as R modules; for the reasons
explained in the Introduction, the class of interest in this work is the differential R
modules which are finitely generated and projective as R modules. We single out
this terminology, which we have already been using, with a formal defintion.

Definition 1. A differential R module which is finitely generated and projec-
tive as an R module is said to be differential finitely generated projective.
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For example, R is a differential finitely generated projective R module. More
generally R(n) with the endomorphism D0((r1, . . . , rn)) = (D(r1), . . . , D(rn)) is a
differential finitely generated projective R module.

If M is any R module, and D1 and D2 are additive endomorphisms of M which
make M a differential R module, then it is elementary to check that D1−D2 is an
R module endomorphism of M . Conversely, if T is any R module endomorphism
of M then the additive endomorphism D1 + T is a differential R module structure
on M .

We apply this observation to differential R modules which are finitely gener-
ated free as R modules, say of rank n: let P be any differential finitely generated
projective module which is free as an R module, and suppose that {x1, . . . , xn} is
an R module basis of P . We use the basis to identify P with R(n), and use DP

for the differential structure on both. Thus DP = D0 + T where T is an R module
endomorphism. T is given by multiplication by a matrix A, so we conclude that
DP ((r1, . . . , rn)) = D0(r1, . . . , rn) + (r1, . . . , rn)A. Conversely, we know that for
any n×n matrix A, this formula defines a differential R module structure on R(n).
For future reference, we will denote this differential module P (A) and denote its
differential structure DA (rather than DP (A)). Note that for P (0) the notation D0

is now unambiguous.
For use below, we now record when modules P (A) and P (B) are differentially

isomorphic.
Occasionally it will be convenient to use another notation for D0: (·)′ ap-

plied to a tuple (or matrix) means to apply D to each entry. (So in the above
D0((r1, . . . , rn)) = (r1, . . . , rn)′.)

Proposition 2. Let A and B be n×n matrices over R. Then P (A) and P (B)
are isomorphic differential modules if and only if there is an invertible N×n matrix
C over R such that C ′ = AC − CB.

Proof. Let P (A) and P (B) be isomorphic as differential modules and sup-
pose the isomorphism is given by the invertible matrix C. Then for all x ∈ P (A)
DB(xC) = DA(x)C. Expanding both sides and cancelling the common term X ′C
from both sides gives xC ′ + xCB = xAC for all x, so that C satisfies the equation
in the statement of the Proposition. Conversely, by reversing the above calcula-
tions we see that multiplication by any C satisfying the equation is a differential
isomorphism. �

We will need the case n = 1 of Proposition 2 so we record it as a corollary.

Corollary 1. Let a and b be elements of R. Then P (a) and P (b) are isomor-
phic differential modules if and only if there is a unit u ∈ R such that u′u−1 = a−b

The expression u′u−1 that appears in Corollary 1 is called the logarithmic
derivative of u and usually denoted dlog(u). It has the property that dlog(uv) =
dlog(u) + dlog(v).

Now let m ∈ P (A). It will be a constant provided that DA(m) = m′+mA = 0.
In other words, m is a solution of the differential equation y′ = −yA. Here y is
thought of as a 1× n matrix.

If B is any r× n matrix then DA(mB) = (mB)′ +mBA, and (mB)′ = m′B +
mB′. If we apply this where m ranges over the standard basis tuples, then the
rows of B are constants provided B′ + BA is the zero matrix. In other words
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B is a solution of the matrix differential equation Y ′ = −Y A; here Y is an r × n
matrix. Thus P (A) will have a basis of constants provided the the matrix differential
equation Y ′ = −AY for Y n × n has an invertible solution. Having an invertible
solution Z to the matrix differential equation Y ′ = −AY in the classical cases
where R is a differential field is known as having a complete set of solutions to the
matrix differential equation.

There may not be such a matrix Z over R. However we can always adjoin
elements to R to obtain such a matrix: let zij , 1 ≤ i, j ≤ n be inderminates over
R and form the polynomial ring R[zij ] := R[z1,1, . . . zn,n]. Define a derivation on
this polynomial ring so that if Z is the n× n matrix over it with i, j entry zij then
Z ′ = −ZA. By the above, the rows of Z are constants in R[zij ]⊗R P . If we further
make Z be invertible by localizing R[zij ] at the determinant d = det(Z) then the
rows of Z become a basis of constants of R[zij ][d

−1] ⊗R P . (This construction is
the same as the first steps of the construction of the Picard–Vessiot ring extension
for the module P ; see [8] and [6].) For latter reference we denote this differential
ring S(A). Note that, by construction, S(A)⊗R P (A) has a basis of constants.

Note that S(A), which as a ring is R ⊗ Z[GLn] is faithfully flat and finitely
generated as an R algebra and there is an R algebra augmentation ε : S(A) → R
determined by Z 7→ In (which is not a differential augmentation, of course). And
if R happens to be the coordinate ring of an affine open subset of affine space, so
is S(A), although the ambient affine spaces are not the same.

Recall that we have termed a differential finitely generated projective module
M induced provided R⊗RD MD →M is an isomorphism and have remarked that
a differential finitely generated projective R module which has a basis of constants
is induced. We have the following characterization of induced modules:

Theorem 1. Let M be a differential finitely generated projective R module.
Then M is a direct summand of a finite number of copies of the differential module
R if and only if there exists a finitely generated projective RD module M0 and a
differential isomorphism R⊗RD M0

∼= M .

Proof. Let M and N be differential modules with M ⊕ N ∼= R(n). Passing
to constants, we have MD ⊕ ND ∼= (RD)(n) which implies that MD is a finitely
generated projective RD module. There are differential maps R⊗RDMD →M and
R⊗RD ND → N . Their direct sum is a map (R⊗RD MD)⊕ (R⊗RD ND)→M⊕N
which is the isomorphism R⊗RD (RD)(n) → R(n). It follows that both the summand
maps are isomorphisms, and in particularR⊗RD MD →M is an isomorphism.

Conversely, if M0 is a finitely generated projective RD module, then there is
a finitely generated projective RD module N0 such that M0 ⊕ N0

∼= (RD)(m) for
some m. Then tensoring with R over RD shows that (R⊗RD M0)⊕ (R⊗RD N0) ∼=
r ⊗RD (RD)(n) = R(n). �

The first half of the proof actually shows that a differential direct summand
(a differential submodule of a differential module which is a direct summand and
has a complement which is differential) of an induced module is induced, applied
to the special case where the ambient module is a finite number of copies of the
differential module R.

Theorem 1 suggests that we consider the functor R⊗RD (·), which takes finitely
generated projective RD modules to differential finitely generated projective R
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modules: Theorem 1 says what the image is on objects. For later use, we record
the following property of this functor.

Lemma 1. Let M0 be a finitely generated projective RD module. Then M0 →
(R⊗RD M0)D by m 7→ 1⊗m is a bijection.

Proof. The map M0 → (R ⊗RD M0)D is natural in M0 and additive. So, as
usual with finitely generated projective modules, it suffices to prove bijection for
the case M0 = RD, where it is trivial since R⊗RD RD = R. �

In the special case that all differential finitely generated projective R modules
are direct sums of copies of R differentially, Theorem 1 shows that all such modules
are induced.

Corollary 2. Assume that all differential finitely generated projective R mod-
ules are direct sums of copies of R. Then all differential finitely generated projective
R modules are of the form R ⊗RD M0 where M0 is a finitely generated projective
RD module.

Theorem 1 can be used to construct examples of differential finitely generated
projective modules. If T is any commutative ring , and R = T [z, z−1] is the ring of
Laurent polynomials over T , then R is a differential ring with derivation determined
by D(z) = z and D(T ) = 0. There is a ring homorphism R→ T given by z 7→ 1. If
T is an integral domain of characteristic 0, then RD = T . Thus differential finitely
generated projective R modules which are direct summands of finitely many copies
of R are all of the form R⊗T P for some finitely generated projective T module P .
By varying T we can obtain examples of various types.

3. All projectives are differential

Next, we see that every finitely generated projective R module is the underlying
module of a differential finitely generated projective module.

Proposition 3. Let M be a projective R module. Then there is an additive
endomorphism DM : M →M that makes M a differential R module.

Proof. LetR[ε] denote the ring of dual numbers overR (The quotientR[t]/Rt2

of the polynomial ring with ε = t + Rt2). The derivation D of R defines a ring
homomorphism Φ : R → R[ε] by the formula r 7→ r + D(r)ε. Note that Φ makes
R[ε] an R algebra via Φ. Consider the R[ε] module R[ε] ⊗Φ M , which we denote
M [ε], which is an R module via Φ. The projection ΨM : M [ε]→M by m+nε 7→ m
satisfies Φ(r)(m + nε) = (r + D(r)ε)(m + nε) = rm + (rn + D(r)m)ε 7→ rm and
hence is R linear. As M is a projective R module, there is an R module homo-
morphism ψM : M → M [ε] such that ΨM (ψM (m)) = m for all m ∈ M . Note
that if ψM (m) = a + bε then m = ΨM (ψM (m)) = ΨM (a + bε) = a. We define
DM by ψM (m) = m + DM (m)ε. Since ψM is an R homomorphism, ψM (rm) =
Φ(r)ψM (m), so rm + DM (rm)ε = (r + D(r)ε)(m + DM (m)ε) which implies that
DM (rm) = D(r)m + rDM (m). Similarly, since ψM (m + n) = ψM (m) + ψM (n),
DM (m + n) = DM (m) + DM (n). Thus DM is the desired additive endomor-
phism. �

We note that if the projective module M in Proposition 3 is finitely generated
then DM makes M a differential finitely generated projective module.



DIFFERENTIAL MODULES AND ALGEBRAS 7

As noted in the introduction, we also have a constructive version of Proposition
3 for explicitly given projective modules. By the latter, we mean the following:
let M be a finitely generated projective R module, and let p : R(n) → M be
an R module surjection. Since M is projective, there is an R module splitting
homomorphism q : M → R(n) such that pq = idM . Let e = qp ∈ EndR(R(n)).
Then e2 = e so e is idempotent and the image of e is isomorphic to M as an R
module. We identify EndR(R(n)) with the matrix ring Mn(R) so that e becomes
an idempotent matrix. Moreover, Mn(R) is a non–commutative differential ring
via the derivation (·)′.

We have the following lemma about idempotents in non–commutative differen-
tial rings:

Lemma 2. Let A be a non–commutative differential ring with derivation (·)δ
and let E be an idempotent of A. Then D(x) = xδ + [[E,Eδ], x] for x ∈ A is a
derivation such of A such that D(E) = 0 and D(x) = xδ if x is in the center of A.

Proof. The only conclusion that needs proof is thatD(E) = Eδ+[[E,Eδ], E] =
0. To see this, we begin by differentiating E = E2 which implies that Eδ =
EEδ + EδE. Multiply this equation on both sides by E and we have EEδE =
EEδE + EEδE which implies that EEδE = 0. Expanding [[E,Eδ], E] we have
[EEδ − EδE,E] = EEδE − EδE − EEδ + EEδE = −(EEδ + EδE) = −Eδ �

Lemma 2 could be stated simply that Eδ+[[E,Eδ], E] = 0 or Eδ = [E, [E,Eδ].
We apply this to A = Mn(R) with (·)δ = (·)′ and E = e. We use the matrix
A = [e, e′] to make R(n) the differential module P (A). Then for x ∈ P (A) D(xe) =
(xe)′ + xeA = x′e + xe′ + xe[e, e′] while D(x)e = (x′ + xA)e = x′e + x[e, e′]e.
Thus D(xe) − D(x)e = xe′ + x(e[e, e′] − [e, e′]e = x(e′ − [e, [e, e′]) = 0 It follows
that e is an (idempotent) differential endomorphism of P (A) and hence that its
image (namely M) is a differential direct summand of P (A) (with complementary
differential summand the image of 1− e). We summarize:

Proposition 4. Let M be a finitely generated projective R module and let e
be an idempotent n × n matrix over R such that the image of e is isomorphic to
M . Then e is an idempotent differential endomorphism of P ([e, e′]) and hence M
is a differential direct summand of P ([e, e′]). Explicitly, for xe ∈ M , DM (xe) =
(xe)′ + xe[e, e′].

Proposition 3 implies that the additive (and multiplicative) trivialization the-
orems for projective modules apply to differential projective modules.

Corollary 3. Let M be a differential finitely generated projective R module.
Then there is a differential finitely generated projective R module N such that M⊕N
as an R module is free of finite rank.

Proof. There is a finitely generated projective R module N such that the R
module M ⊕N is free of finite rank. By Proposition 3, there is a DN that makes
N a differential module. Then M ⊕N is a differential module using the differential
structures of M and N . �

Corollary 4. Let P be a differential finitely generated projective R module,
and assume P is faithfully projective as an R module.. Then there is a differential
finitely generated projective R module Q such that P ⊗R Q as an R module is free
of finite rank.



8 LOURDES JUAN AND ANDY MAGID

Proof. By Bass’s Theorem [3, Proposition 4.6, p 476], there is a finitely gen-
erated projective R module Q such that the R module P ⊗RQ is free of finite rank.
By Proposition 3, there is a DQ that makes Q a differential module. Then P ⊗RQ
is a differential module using the differential structures of P and Q. �

Corollary 3 shows that every differential finitely projective module M appears
as a summand of a differential finitely generated projective module which is free
as an R module, that is, of the form P (A). If this latter module is constantly
generated, then Theorem 1 shows that M is induced from RD. Of course, P (A) may
not be constantly generated. However, we have shown that there is a differential R
algebra S(A) such that S(A)⊗R P (A) is constantly generated, which implies that
S(A)⊗RM is a differential direct summand of a constantly generated module.

Thus we then have the following theorem:

Theorem 2. Let M be a differential finitely generated projective R module.
Then there is a differential R algebra S, finitely generated, faithfully flat, and aug-
mented as an R algebra, such that S ⊗R M ∼= S ⊗SD M0 where M0 is a finitely
generated projective SD module.

Proof. By Corollary 3 M is a differential direct summand of a differential
module P which is finitely generated and free as an R module, say of rank n. If a
basis is chosen for P , then there is a matrix A ∈Mn(R) such that P ∼= P (A). Thus
M can be considered as a differential direct summand of P (A). Let S = S(A).
Since S⊗RP (A) is a direct sum of copies of S as a differential module, and S⊗RM
is a direct summand of S ⊗R P (A), by Theorem 1 S ⊗RM ∼= S ⊗SD M0 for some
finitely generated projective SD module M0. �

Because, in the notation of Theorem 2, S is faithfully flat over R, M can be
recovered from S ⊗RM plus the appropriate descent data. This applies to M as a
differential module as the standard descent data is differential. Once we have passed
to S, then the extension of M becomes induced (tensored–up) from the constants
of S. Thus differential finitely generated projective R modules are obtained from
descent of induced–from–constants modules over differential extensions of R which
are faithfully flat finitely generated augmented R algebras. We can further restrict
S to be of the type S(A), which means the extensions in question are indexed by
n× n matrices over R (for all n).

4. K–Theory

The class of differential finitely generated projective R modules is closed under
(R module) direct sum. Direct sum can be used to make the set of isomorphism
classes of differential finitely generated projective modules into a monoid: If [·]
denotes differential isomorphism class then [M ] + [N ] := [M ⊕ N ]. This is an
associative and commutative operation, with identity [0]. Following the usual con-
ventions, we denote the most general group to which this monoid maps Kdiff

0 (R),
which we call the differential K group of differential projective modules. We de-
note the image of the isomorphism class [M ] in Kdiff

0 (R) by the same symbol, [M ].
If S is a differential R algebra there is a homomorphism Kdiff

0 (R) → Kdiff
0 (S) in-

duced from tensoring over R with S. Any element of Kdiff
0 (R) can be written

[M ] − [N ], where M and N are differential finitely generated projective modules.
By Corollary 3 we can choose a P such that N ⊕ P is free as an R module. Since
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[M ] − [N ] = [M ⊕ P ] − [N ⊕ P ] we can always assume that N is R free, so that
any element of Kdiff

0 (R) is of the form [M ]− [P (A)] for some matrix A. If P and Q
are differential finitely generated projective modules then [P ] = [Q] in Kdiff

0 (R) if
and only if there is a differential finitely generated projective module M such that
P ⊕M ∼= Q ⊕M . By adding an appropriate differential module to M we can, by
Corollary 3 again, assume that M is R free,

The group Kdiff
0 (R) is related to the usual K–theory of R and RD. Regarding

the former, there is a homomorphism Kdiff
0 (R) → K0(R) which, by Proposition 3,

is surjective. An element [M ]− [P (A)] of Kdiff
0 (R) lies in the kernel provided that,

as R modules, M and P (A) are stably isomorphic, which means that M is stably
free, say M⊕R(m) ∼= R(n). In Kdiff

0 (R), [M ]−[P (A)] = [M⊕R(m)]−[P (A)⊕R(m)].
Thus every element of the kernel has the form [P (C)]− [P (D)] where C and D are
matrices of the same size. Conversely, every such matrix pair yields an element of
the kernel.

Regarding RD, there is a homomorphism K0(RD)→ Kdiff
0 (R) given by tensor-

ing over RD with R. By Theorem 1 the image of this homomorphism is given by
(differences of) objects which occur as summands of m[R] for m = 1, 2, 3, . . . . More-
over, there may be a kernel, ultimately due to the fact that a surjective differential
homomorphism need not be surjective on constants.

Theorem 2 provides the following theoretical calculation tool for differential K
theory of projective modules:

Corollary 5. Let x ∈ Kdiff
0 (R). Then there is a differential R algebra,

faithfully flat, finitely generated, and augmented as an R algebra such that under

Kdiff
0 (R)→ Kdiff

0 (S) the image of x lies in the image of K0(SD)→ Kdiff
0 (S).

Proof. Let x = [M1] − [M2] where Mi is a differential finitely generated
projective module. Let Si be the algebra provided for Mi by Theorem 2, and let
S = S1 ⊗ S2. Then both M1 and M2 are differential direct summands of direct
sums of copies of S and hence induced from SD by Theorem 1. �

The situation for differential projective modules which are rank one as R mod-
ules is somewhat simpler. Differential isomorphism classes of such modules form
a multiplicative monoid under the relation [I][J ] := [I ⊗ J ] with [R] acting as
an identity, If I is a differential rank one projective module so is EndR(I). Con-
sider the endomorphism Ta of I given by multiplication by a ∈ R: by definition,
D(Ta)(x) = D(Ta(x))−Ta(D(x) = D(ax)−aD(x) = D(a)x. Thus D(Ta) = TD(a),
which means that R → EndR(I) is a differential map. Since it is an R isomor-
phism, this shows that [EndR(I)] = [R]. The usual isomorphism I∗⊗ I → EndR(I)
is differential, showing that [I∗][I] = [R]. This means the isomorphism classes of
differential rank one projective R modules form a group, which we denote Picdiff(R).
For the special case I = P (a) and J = P (b) for a, b ∈ R, we have I ⊗ J ∼= P (a+ b),
so that a 7→ [P (a)] is a group homomorphism from the additive group of R, which
we denote R+, to Picdiff(R).

There is a homomorphism Picdiff(R)→ Pic(R) sending [I] to the isomorphism
class of I. This is surjective by Corollary 3. The kernel, which we denote Pic0

diff,
consists of I’s which are free as R modules, namely those of the form P (a) for a ∈ R,
in other words R with derivation Da(r) = r′ + ar. The image of R+ → Picdiff(R)
is thus Pic0

diff. Thus Picdiff(R) is an extension of Picdiff by the image of R+, as the
following theorem records.
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Theorem 3. There is an exact sequence

0→ R+/dlog(R) ∼= Pic0
diff → Picdiff → Pic(R)→ 1

Proof. The only assertion that needs proof is the isomorphism R+/dlog(R) ∼=
Pic0

diff. We already know that R+ → Pic0
diff by a 7→ [P (a)] is surjective. By

Corollary 1. [P (a)] = [P (b)] are isomorphic differential modules if and only if there
is a unit u ∈ R such that a − b = dlog(u), which shows that the kernel of the
surjection is dlog(R). �

5. Examples

This section collects some examples illustrating some extreme cases of differ-
ential rings. We intend to pursue investigations of K-theory calculations in future
work.

Example 1. Let R = C with D = 0.

In this case all finitely generated R modules are projective, indeed free, and
for a differential R module M DM is R linear. Thus differential finitely generated
projective R modules are finite dimensional vector spaces with designated endo-
morphisms. The structure, classification, and K-theory of these modules is thus
the same as that of complex matrices under conjugation.

Example 2. Let R = O(C) (the ring of entire functions on the complex plane
in the variable z) with D = d

dz .

It is a consequence of Wieirstrauss Theory that finitely generated ideals of R
are principal. Suppose f is an entire function and that the principal ideal Rf is a
differential ideal. Suppose that f(α) = 0 for some α ∈ C, and suppose the order of
the zero of f at α is n > 0. Then f ′ has a zero at α of order n− 1. But since Rf is
a differential ideal, f is a factor of f ′, so that f ′ has a zero at α of order at least n.
We conclude that f has no zeros, and hence is a unit, so that Rf = R is the only
finitely generated differential ideal of R.

On the other hand, R has proper differential ideals: again by Wierstrauss
Theory, there is an entire function g which has a zero at n of order n for every
natural number n ∈ N. This means that for any m the functions g(i), i = 0, 1, . . . ,m
have infinitely many common zeros at m + 1,m + 2, . . . and so the ideal of R
generated by g, g′, . . . , g(m) does not contain 1. It follows that the differential ideal
I of R generated by g is proper. We note that the differential R module R/I is
finitely generated as an R module, but not projective as an R module, since R is
an integral domain, and hence its only idempotents are 0 and 1, so the surjection
R → R/I can’t split. This is thus an example of a non–projective differential
finitely generated module over a differential ring that has no non–trivial finitely
generated differential ideals.

Because finitely generated ideals of R are principal, finitely generated projective
R modules are free. This means that the differential R modules which are finitely
generated and projective as R modules are R free, so have the form P (A) for a
suitable matrix A over R. [Monic, homogeneous] linear differential equations with
entire coefficients have an entire solution, which implies that P (A) has a basis of
constants, and hence is a differential direct sum of copies of R.
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By Corollary 2 this means that every differential finitely generated projective
R module is induced from RD = C. (Note: this is C as a ring, not as a differential
ring as in Example 1.)

Example 3. Let R be the localized polynomial ring C[a, b, c][h−1] where h =
a2b2 + a2c+ b2c and D(a) = a, D(b) = b, D(c) = c, and D(α) = 0 for α ∈ C.

Finitely generated projective R modules are free, so all of the form P (A) for
some A. Let A be the 2 × 2 complex matrix −I2, and consider the differential R
module M = P (A), which is free of rank 2 as an R module. We will see that M is
constantly generated but not induced.

For x ∈ M , DM (x) = x′ + xA. Then DM ((a, 0)) = (0, 0), DM ((0, b)) =
(0, 0), and DM ((c, c)) = (0, 0), so (a, 0), (0, b), and (c, c) are constants. Moreover,
a(a, 0) + (c, c) = (a2 + c, c) and b(0, b) + (c, c) = (c, b2 + c) are the rows of a 2× 2
matrix whose determinant h is a unit of R, and hence they form a basis of M . Thus
the constants (a, 0), (0, b), and (c, c) span M .

In other words, T : R(3) → M by (x, y, x) 7→ x(a, 0) + y(0, b) + z(c, c) =
(xa+ zc, yb+ zc) is a differential surjection. The matrix of T is[

a 0 c
0 b c

]
.

It is easy to calculate a right R module inverse to T :

[
a 0 c
0 b c

]
·

a 0
0 b
1 1

 =

[
a2 + c c
c b2 + c

]
= C

and det(C) = h (unit of R). If T had a differential right inverse, then M would be
a differential direct summand of R(3) and hence, by Theorem 1, induced. We see
that this is not the case.

Suppose (x, y) ∈ M is a constant. Then (0, 0) = DM ((x, y)) = (x′ − x, y′ − y)
so D(x) = x and D(y) = y. Now suppose (x, y) and (z, w) are an R basis of M
consisting of constants. The determinant of the matrix with rows (x, y) and (z, w)
is g = xw − yz and D(g) = 2g. Moreover, g is a unit. Now R is the localization
of a unique factorization domain at an irreducible polynomial, so its only units are
complex multiples of powers of h. So suppose g = chk, α ∈ C, in the polynomial
ring. Then 2α2hk = 2g = D(g) = αkhk−1D(h) which implies that h is a factor of
D(h). But D(h) = 4a2b2 + 3b2c + 3a2c is not a polynomial multiple of h. Thus
we conclude that M does not have a basis of constants, despite the fact that it is
constantly generated. We now show that this implies M is not induced by showing
that RD = C. Consider an element of R with derivative zero. We can write this as
a fraction p

q where p and q are relatively prime polynomials and q is a power of h.

Since p
q is a constant, qD(p)− pD(q) = 0. If q 6= 1 this implies that q is a factor of

D(q). Since q = hk for some k > 0, we have hk as a factor of khk−1D(h) so that h
is a factor of D(h); as noted, this is not possible. Thus q = 1 and D(p) = 0. Write
p =

∑n
i=0 pi, where pi is the term in p of total degree i. Then D(p) =

∑n
ipi so

D(p) = 0 implies that p = p0 ∈ C.

Example 4. Let F be a differential field whose field of constants C is alge-
braically closed of characteristic zero and let E ⊃ F be a Picard–Vessiot extension
with differential Galois group G = PGLn(C), n > 1. Let R be the Picard–Vessiot
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ring of the extension, and assume that as a ring R = F ⊗C C[PGLn]. (Such
examples are known and easy to construct since we have no constraint on F ).

Since Pic(C[PGLn]) = Z/nZ we conclude that Pic(R) contains Z/nZ and
in particular is non–zero. Let J ⊂ C[PGLn] be a (projective) ideal generating
Pic(C[PGLn]) and let J = F ⊗ I be the corresponding rank one projective ideal of
R. By Proposition 3 J carries a differential structure, although not as a differential
ideal of R (R is differentially simple). Moreover, since R is differentially simple,
the cyclic R submodule generated by a constant in any differential module is a
differential direct summand. Thus J , as a differential module, can’t contain any
constants.

The units of C[PGLn] are elements of C (in general the units of C[G] are
constants times characters of G) from which it follows that the units of R are non–
zero elements of F , so that dlog(R) = dlog(F ). Thust R/dlog(R) contains the
countable dimensional F vector space spanned by the augmentation ideal of R, and
hence Pic0

diff(R) is highly infinite.
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