Homework \# 1 Math 2450

Due: September 1, 2015

1. Let $\vec{v}=4 \vec{i}-2 \vec{j}+\vec{k}$ and $\vec{w}=2 \vec{j}+3 \vec{k}$. Compute the following:
(a) $\vec{v} \cdot \vec{w}$
(b) $\vec{v} \times \vec{w}$
(c) A unit vector orthogonal to both \vec{v} and \vec{w}.
(d) The direction cosines of \vec{v}.
(e) The angle between \vec{v} and \vec{w}.
2. Write an equation for a sphere with center $(1,2,3)$ and passing through the point $(2,-1,5)$.
3. Graph the cylinder and the plane: $x^{2}+z^{2}=25$ and $x+2 y=4$.
4. Suppose that a wind is blowing with a $1000-\mathrm{lb}$ magnitude force \vec{F} in the direction $N 60^{\circ} W$ behind a boat's sail. How much work does the wind perform in moving the boat in a northerly direction a distance of 50 feet? Express your answer in foot-pounds.
5. Find the volume of the parallelpiped formed by the three vectors $\vec{u}=\vec{i}-\vec{j}, \vec{v}=2 \vec{i}-\vec{k}$ and $\vec{w}=3 \vec{j}+\vec{k}$.

6 . Let $\vec{v}=\langle 1,1,1\rangle$. Find all vectors \vec{w} such that $\vec{v} \times \vec{w}=\vec{w}$.
7. Let $\vec{u}=\vec{i}+\vec{j}, \vec{v}=2 \vec{i}-\vec{j}+\vec{k}$ and $\vec{w}=4 \vec{i}$. Compute $(\vec{u} \times \vec{v}) \times \vec{w}$ and $\vec{u} \times(\vec{v} \times \vec{w})$ to show that the cross product is NOT associative.
8. For the following lines in \mathbb{R}^{3}, compute
(a) parametric form passing through $(3,2,-2)$ and parallel to both the $x y$ - and $y z$ - planes.
(b) symmetric form passing through $(-2,2,5)$ and $(2,0,-4)$.
(c) Find two unit vectors parallel to the line: $\frac{x-2}{4}=\frac{y}{2}=z+1$.
(d) parametric equations for a line passing through $(1,2,3)$ and perpendicular to the plane $-2 x-y+2 z=$ 1.
9. Sketch the path described by the parametric equations.
(a) $x=t+1, y=t^{2}-2,-1 \leq t \leq 2$
(b) $x=2+3 \cos \theta, y=-4+5 \sin (\theta), 0 \leq \theta \leq 2 \pi$
(c) $x=\exp (t), y=\exp (-t),-\infty<t<\infty$.
10. Write an equation for a plane in standard form $A x+B y+C z+D=0$:
(a) passing through the point $(2,5,0)$ with normal vector $\vec{N}=2 \vec{i}+4 \vec{k}$.
(b) passing through the points $(2,1,1),(1,3,0)$ and $(-4,0,2)$.

