Homework # 1 Math 2450

Due: September 1, 2015

- 1. Let $\vec{v} = 4\vec{i} 2\vec{j} + \vec{k}$ and $\vec{w} = 2\vec{j} + 3\vec{k}$. Compute the following:
 - (a) $\vec{v} \cdot \vec{w}$
 - (b) $\vec{v} \times \vec{w}$
 - (c) A unit vector orthogonal to both \vec{v} and \vec{w} .
 - (d) The direction cosines of \vec{v} .
 - (e) The angle between \vec{v} and \vec{w} .
- 2. Write an equation for a sphere with center (1, 2, 3) and passing through the point (2, -1, 5).
- 3. Graph the cylinder and the plane: $x^2 + z^2 = 25$ and x + 2y = 4.
- 4. Suppose that a wind is blowing with a 1000-lb magnitude force \vec{F} in the direction $N60^{\circ}W$ behind a boat's sail. How much work does the wind perform in moving the boat in a northerly direction a distance of 50 feet? Express your answer in foot-pounds.
- 5. Find the volume of the parallelpiped formed by the three vectors $\vec{u} = \vec{i} \vec{j}$, $\vec{v} = 2\vec{i} \vec{k}$ and $\vec{w} = 3\vec{j} + \vec{k}$.
- 6. Let $\vec{v} = \langle 1, 1, 1 \rangle$. Find all vectors \vec{w} such that $\vec{v} \times \vec{w} = \vec{w}$.
- 7. Let $\vec{u} = \vec{i} + \vec{j}$, $\vec{v} = 2\vec{i} \vec{j} + \vec{k}$ and $\vec{w} = 4\vec{i}$. Compute $(\vec{u} \times \vec{v}) \times \vec{w}$ and $\vec{u} \times (\vec{v} \times \vec{w})$ to show that the cross product is NOT associative.
- 8. For the following lines in \mathbb{R}^3 , compute
 - (a) parametric form passing through (3, 2, -2) and parallel to both the xy- and yz- planes.
 - (b) symmetric form passing through (-2, 2, 5) and (2, 0, -4).
 - (c) Find two unit vectors parallel to the line: $\frac{x-2}{4} = \frac{y}{2} = z+1$.
 - (d) parametric equations for a line passing through (1, 2, 3) and perpendicular to the plane -2x y + 2z = 1.
- 9. Sketch the path described by the parametric equations.
 - (a) $x = t + 1, y = t^2 2, -1 \le t \le 2$
 - (b) $x = 2 + 3\cos\theta, y = -4 + 5\sin(\theta), 0 \le \theta \le 2\pi$
 - (c) $x = \exp(t), y = \exp(-t), -\infty < t < \infty$.
- 10. Write an equation for a plane in standard form Ax + By + Cz + D = 0:
 - (a) passing through the point (2, 5, 0) with normal vector $\vec{N} = 2\vec{i} + 4\vec{k}$.
 - (b) passing through the points (2, 1, 1), (1, 3, 0) and (-4, 0, 2).