Solve Laplace's equation on a Rectangular Domain

 Due: Wednesday, October 24, 20181. (16 pts) Solve Laplace's equation $u_{x x}+u_{y y}=0$ on the square $0<x<1,0<y<1$ with the following boundary conditions.
(a) $u(0, y)=0, u(1, y)=0,0<y<1$ $u(x, 0)=2 \sin (3 \pi x), u(x, 1)=0,0<x<1$.
What is the maximum temperature on the square?
What is the minimum temperature on the square?
(b) $u(0, y)=0, u(1, y)=\sin (\pi y), 0<y<1$ $u(x, 0)=0, u(x, 1)=0,0<x<1$.
(c) $u(0, y)=0, u(1, y)=\sin (\pi y), 0<y<1$ $u(x, 0)=2 \sin (3 \pi x), u(x, 1)=0,0<x<1$.
2. (4 pts) The solution of Laplace's equation $u_{x x}+u_{y y}=0$ on the square $0<x<\pi, 0<y<\pi$ is

$$
u(x, y)=\frac{\sinh (2 y)}{\sinh (2 \pi)} \sin (2 x)-2 \frac{\sinh (4 y)}{\sinh (4 \pi)} \sin (4 x)+\left[3 \cosh (x)-\frac{3 \cosh (\pi)}{\sinh (\pi)} \sinh (x)\right] \sin (y) .
$$

What is the temperature on each of the four boundaries, $x=0$? $x=\pi ? y=0 ? y=\pi$? The solution is graphed below.

