Review Topics for Exam \# 1

Math 4354, 8.1-8.2, 10.1-10.3, 11.1-11.3
Review: All material on our website. WeBWorK \#1,2, Homework \#1,2.
Theory Linear Systems of ODEs: $\vec{X}^{\prime}(t)=A(t) \vec{X}(t)+\vec{F}(t)$ has general solution: $\vec{X}(t)=\vec{X}_{c}(t)+\vec{X}_{p}(t)$, where $\vec{X}_{c}(t)=c_{1} \vec{X}_{1}(t)+c_{2} \vec{X}_{2}(t)+\cdots+c_{n} \vec{X}_{n}(t)$ is the solution of the homogeneous DE, n linearly independent vector solutions, and $\vec{X}_{p}(t)$ is any particular solution of the nonhomogeneous DE. The Wronskian is nonzero $W\left(\vec{X}_{1}(t), \ldots, \vec{X}_{n}(t)\right) \neq 0$ for some t, if the set is independent.
Homogeneous Linear Systems of ODEs: $\vec{X}^{\prime}(t)=A \vec{X}(t) . A$ is a 2×2 matrix. Compute the general solution $c_{1} \vec{X}_{1}(t)+c_{2} \vec{X}_{2}(t)$ and solve for c_{1} and c_{2} given an initial vector. (See website handout). The solution depends on the eigenvalues ($\lambda_{1,2}$ real, repeated, or complex) and corresponding eigenvectors ($\vec{K}_{1,2}$ nonzero vectors) of matrix A. Eigenvalues of an upper or a lower triangular matrix A are values on the diagonal.
Stability in Homogeneous Linear Systems of ODEs: $\vec{X}^{\prime}(t)=A \vec{X}(t)$. The origin $(0,0)$ is a unique critical point iff $|A| \neq 0$. Classify the origin as stable or unstable node, stable or unstable spiral, center or saddle
Nonlinear Autonomous Systems of ODE: $d x / d t=P(x, y), d y / d t=Q(x, y)$. Critical points are computed by setting the derivatives equal to zero, $P(x, y)=0$ and $Q(x, y)=0$. Classify a critical point $\left(x_{0}, y_{0}\right)$ as stable or unstable node, stable or unstable spiral, center or saddle by computing the eigenvalues of the Jacobian matrix evaluated at the critical point $\left(x_{0}, y_{0}\right)$:

$$
J\left(x_{0}, y_{0}\right)=\left.\left(\begin{array}{cc}
\frac{\partial P}{\partial x} & \frac{\partial P}{\partial y} \\
\frac{\partial Q}{\partial x} & \frac{\partial Q}{\partial y}
\end{array}\right)\right|_{\left(x_{0}, y_{0}\right)}
$$

Two positive eigenvalues means an unstable node, two negative means a stable node, one positive and one negative means a saddle. Complex conjugate eigenvalues $\lambda=\alpha \pm i \beta: \alpha>0$ means an unstable spiral, $\alpha<0$ means a stable spiral.
Orthogonal Functions and Fourier Series: $\left\{\phi_{0}(x), \phi_{1}(x), \ldots\right\}$ orthogonal set on $[a, b]$ if $\int_{a}^{b} \phi_{n}(x) \phi_{m}(x) d x=0$, $n \neq m$. The set of trigonometric functions form an orthogonal set on $[-L, L]$:

$$
\left\{1, \cos \left(\frac{\pi x}{L}\right), \sin \left(\frac{\pi x}{L}\right), \cos \left(\frac{2 \pi x}{L}\right), \sin \left(\frac{2 \pi x}{L}\right), \ldots\right\} .
$$

Fourier Series for $f(x)$ defined on $[-L, L]$:

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right] .
$$

The coefficients, a_{0}, a_{n}, b_{n} are computed from the orthogonality of the trigonometric functions on $[-L, L]$. The Fourier series simplify if the function $f(x)$ is even or odd. The Fourier cosine series (even function) and Fourier sine series (odd function):

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi x}{L}\right) \text { and } f(x)=\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi x}{L}\right) .
$$

All Fourier series have period $2 L$. At a jump discontinuity x_{0} of a function $f(x)$, the Fourier series (or Fourier cosine or sine series) converges to $\left[f\left(x_{0}+\right)+f\left(x_{0}-\right)\right] / 2$. Write a Fourier series, Fourier cosine series or Fourier sine series for a function $f(x)$ on $[-L, L]$ or $[0, L]$ and graph the periodic extensions.

Practice Problems:

1. The solution of $X^{\prime}(t)=A X(t)$ is $X(t)=e^{2 t}\left[c_{1}\binom{2 \cos (t)}{\sin (t)}+c_{2}\binom{-2 \sin (t)}{\cos (t)}\right]$. What are the eigenvalues of matrix A ? Is the origin a stable or unstable node, a stable or unstable spiral or a saddle?
2. Compute the general solution of $X^{\prime}(t)=A \vec{X}(t)$, where $A=\left(\begin{array}{cc}2 & -1 \\ 1 & 4\end{array}\right)$. Write the unique solution for the initial condition $\vec{X}(0)=\binom{4}{1}$.
3. For the nonlinear autonomous system $d x / d t=x(5-y)$ and $d y / d t=y(x+y-4)$ compute all of the critical points and the Jacobian matrix. Classify each critical point as a stable or unstable node, stable or unstable spiral, or saddle.
4. Write the Fourier series for $f(x)=\left\{\begin{array}{ll}1, & -\pi<x<0, \\ 3, & 0<x<\pi .\end{array}\right.$ Graph the Fourier series for $-3 \pi<x<3 \pi$. To what value does the Fourier series converge at $x=0 ? x=\pi ? x=2 \pi$?
