Laplace Transforms to Solve BVPs for PDEs

Laplace transforms can be used solve linear PDEs. Laplace transforms applied to the t variable (change to s) and the PDE simplifies to an ODE in the x variable. Recall the Laplace transform for f(t).

$$\mathcal{L}{f(t)} = \int_0^\infty e^{-st} f(t) dt = F(s), \quad \mathcal{L}^{-1}{F(s)} = f(t)$$

Apply the Laplace transform to u(x,t) and to the PDE.

$$\mathcal{L}\{u(x,t)\} = U(x,s), \quad \mathcal{L}^{-1}\{U(x,s)\} = u(x,t)$$

The Laplace transform changes the derivatives with respect to t but NOT x:

$$\mathcal{L}\{u_t\} = s\mathcal{L}\{u(x,t)\} - u(x,0) = sU(x,s) - u(x,0)$$

$$\mathcal{L}\{u_{tt}\} = s^2U(x,s) - su(x,0) - u_t(x,0)$$

$$\mathcal{L}\{u_{xx}\} = \int_0^\infty e^{-st} \frac{\partial^2 u}{\partial x^2} dt = \frac{d^2}{dx^2} \int_0^\infty e^{-st} u(x,t) dt = \frac{d^2U}{dx^2}.$$

Apply the Laplace transform to the heat equation, $ku_{xx} = u_t$ and the wave equation $a^2u_{xx} = u_{tt}$:

Heat:
$$k\mathcal{L}\{u_{xx}\} = \mathcal{L}\{u_t\} \Rightarrow k\frac{d^2U}{dx^2} = sU - u(x,0)$$

Wave:
$$a^2 \mathcal{L} \{u_{xx}\} = \mathcal{L}\{u_{tt}\} \implies a^2 \frac{d^2 U}{dx^2} = s^2 U - su(x,0) - u_t(x,0)$$

Example 1: Solve the heat equation with Laplace transforms: $\begin{cases} u_{xx} = u_t, \ 0 < x < \infty, \ 0 < t < \infty \\ u(0,t) = 1, \lim_{x \to \infty} u(x,t) = 2, \ 0 < t < \infty \\ u(x,0) = 2, \ 0 < x < \infty \end{cases}$

The Laplace transform changes the PDE in x and t to an ODE in x: $\mathcal{L}\{u_{xx}\} = \mathcal{L}\{u_t\}$

$$\frac{d^2U}{dx^2} = sU - u(x,0)$$

$$\frac{d^2U}{dx^2} - sU = -2$$

Solve the ODE. $U = U_c + U_p$, $U_c = c_1 e^{-\sqrt{s}x} + c_2 e^{\sqrt{s}x}$ and $U_p = A$. Solving for A, $U_p = \frac{2}{s}$.

$$U(x,s) = c_1 e^{-\sqrt{s}x} + c_2 e^{\sqrt{s}x} + \frac{2}{s}$$

Apply the Laplace transform to BC, x = 0, $x \to \infty$: $\mathcal{L}\{u(0,t)\} = \mathcal{L}\{1\}$ and assume $\lim_{x \to \infty} \mathcal{L}\{u(x,t)\} = \mathcal{L}\{2\}$

$$U(0,s) = \frac{1}{s}$$
 and $\lim_{x \to \infty} U(x,s) = \frac{2}{s}$

Solve for c_1 and $c_2: U(0,s) = \frac{1}{s} = c_1 + c_2 + \frac{2}{s}$. As $x \to \infty$, $c_2 = 0$. So $c_1 = -\frac{1}{s}$

$$U(x,s) = -\frac{e^{-\sqrt{s}x}}{s} + \frac{2}{s}$$

Take the inverse Laplace transform and use the table.

$$\mathcal{L}^{-1}{U(x,s)} = -\mathcal{L}^{-1}\left\{\frac{e^{-\sqrt{s}x}}{s}\right\} + 2\mathcal{L}\left\{\frac{1}{s}\right\}$$

$$u(x,t) = -\operatorname{erfc}\left(\frac{x}{2\sqrt{t}}\right) + 2$$

Example 2: Solve the wave equation with Laplace transforms: $\begin{cases} u_{xx} = u_{tt}, \ 0 < x < 1, \ 0 < t < \infty \\ u(0,t) = 0, \ u(1,t) = 0, \ 0 < t < \infty \\ u(x,0) = 0, \ u_t(x,0) = \sin(\pi x), \ 0 < x < 1. \end{cases}$

The Laplace transform changes the PDE to an ODE in x, $\mathcal{L}\{u_{xx}\} = \mathcal{L}\{u_{tt}\}$.

$$\frac{d^2U}{dx^2} = s^2U - su(x,0) - u_t(x,0)$$

$$\frac{d^2U}{dx^2} - s^2U = -\sin(\pi x)$$

Solve the ODE: $U = U_c + U_p$: $U_c = c_1 e^{-sx} + c_2 e^{sx}$ and $U_p = A \sin(\pi x) + B \cos(\pi x)$. Solving for A and B by substituting into the ODE,

$$-A\pi^{2}\sin(\pi x) - B\pi^{2}\cos(\pi x) - s^{2}(A\sin(\pi x) + B\cos(\pi x)) = -\sin(\pi x)$$

and matching coefficients: $-A\pi^2 - As^2 = -1$, $-B\pi^2 - Bs^2 = 0$ implies

$$A = \frac{1}{\pi^2 + s^2}$$
 and $B = 0$, so that $U_p = \frac{1}{\pi^2 + s^2} \sin(\pi x)$

The solution is

$$U(x,s) = c_1 e^{-sx} + c_2 e^{sx} + \frac{1}{\pi^2 + s^2} \sin(\pi x)$$

Apply the BC to find c_1 and c_2 , U(0,s) = 0, U(1,s) = 0: $c_1 = 0$ and $c_2 = 0$.

$$U(x,s) = \frac{1}{\pi^2 + s^2} \sin(\pi x)$$

Take the inverse Laplace transform and use the table:

$$\mathcal{L}^{-1}\{U(x,s) = \mathcal{L}^{-1}\left\{\frac{1}{\pi^2 + s^2}\right\} \underbrace{\sin(\pi x)}_{\text{No } s \text{ variable}}$$

$$u(x,t) = \frac{1}{\pi}\sin(\pi t)\sin(\pi x).$$

Also, the BVP can be solved using separation of variables and the homogeneous BC:

$$u(x,t) = \sum_{n=1}^{\infty} [a_n \cos(n\pi t) + b_n \sin(n\pi t)] \sin(n\pi x)$$

Applying the IC u(x,0) = 0 and $u_t(x,0) = \sin(\pi x)$ leads to

$$u(x,0) = 0 = \sum_{n=1}^{\infty} a_n \sin(n\pi x) \Longrightarrow a_n = 0, \ n = 1, 2, \dots$$

$$u_t(x,0) = \sin(\pi x) = \sum_{n=1}^{\infty} b_n n \pi \sin(n\pi x) \Longrightarrow b_1 \pi = 1, \ b_n = 0, \ n = 2, 3, \dots$$

The same solution is obtained: $u(x,t) = \frac{1}{\pi}\sin(\pi t)\sin(\pi x)$.

Homework Problems

- 1. Solve the BVP for the heat equation 14.2 # 11.
- 2. Solve the BVP for the wave equation using two methods: (1) Laplace transforms and (2) Separation of Variables. Show the solution is $u(x,t) = 4\cos(3\pi t)\sin(3\pi x) + \frac{2}{\pi}\sin(\pi t)\sin(\pi x)$.

$$\begin{cases} u_{xx} = u_{tt}, \ 0 < x < 1, \ 0 < t < \infty \\ u(0,t) = 0, \ u(1,t) = 0, \ 0 < t < \infty \\ u(x,0) = 4\sin(3\pi x), \ u_t(x,0) = 2\sin(\pi x), \ 0 < x < 1. \end{cases}$$