Math 4350.004 Spring 2018 3.7 Infinite Series

1. Let $X := (x_n)$ be a sequence in \mathbb{R} . The infinite series generated by X is the sequence of partial sums $S := (s_k)$ defined by

$$s_{1} := x_{1}$$

$$s_{2} := x_{1} + x_{2} = s_{1} + x_{2}$$

$$s_{3} := x_{1} + x_{2} + x_{3} = s_{2} + x_{3}$$

$$\dots$$

$$s_{k} := x_{1} + x_{2} + \dots + x_{k} = s_{k-1} + x_{k}$$

The **infinite series** is expressed as $\sum_{n=1}^{\infty} (x_n) = \sum_{n=1}^{\infty} x_n$. The infinite series does not have to begin at n = 1. To show an infinite series converges, show that the sequence of partial sums (s_k) converges.

That is, $\lim s_k = L$ for some real number L or show (s_k) is a Cauchy sequence: let $\epsilon > 0$ and there exists $K \in \mathbb{N}$ such that $|s_m - s_n| < \epsilon$ for $m, n \ge K$.

2. The geometric series converges for |r| < 1:

$$\sum_{n=0}^{\infty} r^n = 1 + r + r^2 + \dots + r^n + \dots = \frac{1}{1-r}$$

Does the series $\sum_{n=2}^{\infty} \frac{3}{2^n}$ converge? If yes, find the limit of the series.

- 3. The harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges and the alternating harmonic series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ converges.
- 4. The **p-series** $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges if p > 1 and diverges if 0 .

Do the following series converge or diverge

e?
$$\sum_{n=2}^{\infty} \frac{\pi}{\sqrt{n}}, \quad \sum_{n=5}^{\infty} \frac{n+1}{n^2}$$

5. The nth Term Test: If the series $\sum x_n$ converges, then $\lim(x_n) = 0$. State the contrapositive of the nth Term Test. Show that the series $\sum \cos(n)$ diverges. Show that the series $\sum \cos(n)/n^2$ converges. Give a counterexample to show that the converse of the nth Term Test is false.

- 6. Comparison Test: Let $X := (x_n)$ and $Y := (y_n)$ be real sequences and for some natural number $K \in \mathbb{N}$, $0 \le x_n \le y_n \text{ for } n \ge K.$

 - (a) If $\sum y_n$ converges, then $\sum x_n$ converges. (b) If $\sum x_n$ diverges, then $\sum y_n$ diverges.
- 7. True or False? If it is true, give a proof. If it is false, give a counterexample.
 - (a) If $\sum x_n$ and $\sum y_n$ are both convergent, then $\sum (x_n + y_n)$ is convergent.
 - (b) If $\sum x_n$ and $\sum y_n$ are both divergent, then $\sum (x_n + y_n)$ is divergent.
 - (c) If $\sum x_n$ is convergent and $\sum y_n$ is divergent, then $\sum (x_n + y_n)$ is divergent.
 - (d) If $\sum x_n$ with $x_n > 0$ is convergent, then $\sum x_n^2$ is convergent.