Final Exam, Math 2450, Fall 2013

Do not use a calculator. Show all of your work in the Blue Book. Each problem is worth 10 pts.

1. Given the acceleration vector $\vec{A}(t)=\cos (2 t) \vec{i}+e^{(t-1)} \vec{j}+\frac{1}{t^{2}} \vec{k}, \vec{V}(1)=\vec{j}$, and $\vec{R}(1)=2 \vec{i}$ determine the velocity vector $\vec{V}(t)$ and position vector $\vec{R}(t)$.
2. (a) Find the unit tangent vector $\vec{T}(t)$ and principal unit normal vector $\vec{N}(t)$ for the curve traced by the position vector $\vec{R}(t)=t \vec{i}+\cos (2 t) \vec{j}-\sin (2 t) \vec{k}$.
(b) Find the arclength from $t_{0}=0$ to $t_{1}=\pi, s=\int_{t_{0}}^{t_{1}}\left\|\vec{R}^{\prime}(t)\right\| d t$.
3. Calculate the following partial derivatives.
(a) $\frac{\partial f}{\partial u}$ if $f(x, y, z)=\sin (z) e^{x^{2} y}, x=3 u+4 v, y=\frac{\ln (u)}{v}$ and $z=u^{2}$.
(b) $\frac{d g}{d t}$ if $g(x, y)=\tan \left(x^{2}+y^{2}\right), x=\sqrt{t}$ and $y=\cos \left(t^{2}+1\right)$.
4. Given the function $f(x, y)=x^{4}+3 y^{2}-2 x^{2}-6 y-4$, find the critical points. Then use the second partials test to classify them as relative maxima, relative minima or saddle points.
5. Use Lagrange multipliers to find the minimum of $f(x, y, z)=2 x^{2}+3 y^{2}+z^{2}$ subject to the constraint $2 x-3 y+z=5$.
6. Evaluate the integral with the order of integration reversed: $\int_{0}^{2} \int_{y}^{2} \sqrt{1+x^{2}} d x d y$.
7. Write an equation for the tangent plane to the surface $2 x^{2}-x z+y^{2}-z^{3}=1$ at the point $P_{0}(1,-1,1)$.
8. Find the volume between the two paraboloids: $z=x^{2}+y^{2}$ and $z=8-x^{2}-y^{2}$.
9. Evaluate the double integral: $\int_{-2}^{2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} \sqrt{x^{2}+y^{2}} d y d x$.
10. Evaluate the triple integral: $\iiint_{H} \sqrt{x^{2}+y^{2}+z^{2}} d V$, where H is the hemisphere $x^{2}+y^{2}+z^{2} \leq 4$ and $x \geq 0$.
11. Evaluate the line integral $\int_{C}\left[x y d x+x^{3} d y\right]$, where C is the curve $y=x^{2}+1$ from $(0,1)$ to $(1,2)$.
12. Use Green's Theorem in the plane to evaluate the line integral $\oint_{C}[2 x y d x+3 x d y]$, where C is the boundary of the unit square passing through $(0,0),(1,0),(1,1),(0,1),(0,0)$.
13. Show that the vector field $\vec{F}=\left(2 x y^{2}-4\right) \vec{i}+\left(2 x^{2} y+3 y^{2}\right) \vec{j}$ is conservative, then find the scalar potential f $(\nabla f=\vec{F})$ and evaluate the line integral $\int_{C} \vec{F} \cdot d \vec{R}$, where C is the curve $y=x^{2}-1$ from $(1,0)$ to $(2,3)$.
14. Make a change of variable to evaluate the double integral $\iint_{D}(x-3 y)^{4}(x+2 y)^{9} d A$, where D is the region $1 \leq x-3 y \leq 2$ and $0 \leq x+2 y \leq 1$.
15. Use the Divergence Theorem to evaluate the flux integral $\iint_{S} \vec{F} \cdot \vec{N} d S$, where S is the surface of the sphere $x^{2}+y^{2}+z^{2}=9$ and $\vec{F}=2 x \vec{i}+\left(y+z^{2}\right) \vec{j}+3 z \vec{k}$ (\vec{N} is outward normal).
16. Use Stoke's Theorem to evaluate the line integral $\oint_{C}\left[x y d x+y^{3} d y+z d z\right]=\iint_{S} \operatorname{curl} \vec{F} \cdot \vec{N} d S$, where S is surface of the paraboloid $z=9-x^{2}-y^{2}$ with $z \geq 8$. Curve C the boundary of this surface in the plane $z=8$, traversed counterclockwise as viewed from above (\vec{N} is upward normal).
17. Answer True or False. Let $f(x, y)=x^{2}+y^{2}$
(a) The plane tangent to the surface of f at $(1,1)$ is $z=2+2 x(x-1)+2 y(y-1)$.
(b) The directional derivative in the direction from $P_{0}(1,1)$ to $P_{1}(2,3)$ is $f_{\vec{u}}(1,1)=6 \sqrt{5}$.
(c) The largest value of the directional derivative of f at the point $(1,1)$ is $2 \sqrt{2}$.
