Review for Exam \# 2, Math 2450, Fall 2015 Chapter Sections: 11.4-11.8, 12.1-12.5,12.7-12.8, 13.2

Review: Four Homework Assignments, Webwork 5, 6, 7 and Quizzes \# 2,3.
Tangent plane to $z=f(x, y)$ at a point $P_{0}\left(x_{0}, y_{0}, z_{0}\right): \vec{N}=<f_{x}\left(x_{0}, y_{0}\right), f_{y}\left(x_{0}, y_{0}\right),-1>=<A, B,-1>$ is normal to the surface. Tangent plane is $z-z_{0}=A\left(x-x_{0}\right)+B\left(y-y_{0}\right)$.
Tangent plane to an implicit surface $F(x, y, z)=c$ at a point $\left.P_{0}=P\left(x_{0}, y_{0}, z_{0}\right): \nabla F=\left.\left\langle F_{x}, F_{y}, F_{z}\right\rangle\right|_{P_{0}}=<A, B, C\right\rangle$ evaluated at P_{0} is the is normal to the surface, so the tangent plane is $A\left(x-x_{0}\right)+B\left(y-y_{0}\right)+C\left(z-z_{0}\right)=0$. The line normal to the tangent plane at $P_{0}: x=x_{0}+A t, y=y_{0}+B t, z=z_{0}+C t$.

Incremental Approximation at $P\left(x_{0}, y_{0}\right): \Delta f=f(x+\Delta x, y+\Delta y)-f(x, y) \approx f_{x} \Delta x+f_{y} \Delta y$, where the partials are evaluated at $\left(x_{0}, y_{0}\right)$; Total differential for $f(x, y, z): d f=f_{x} d x+f_{y} d y+f_{z} d z$.
Chain rule for $z=f(x, y), x \equiv x(t), y \equiv y(t) z \equiv f(x(t), y(t)): \frac{d z}{d t}=\frac{\partial z}{\partial x} \frac{d x}{d t}+\frac{\partial z}{\partial y} \frac{d y}{d t}$. For $z=f(x, y), x \equiv x(u, v)$, $y \equiv y(u, v), z=f(x(u, v), y(u, v)):$

$$
\begin{aligned}
& \frac{\partial z}{\partial v}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial v}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial v} . \\
& \frac{\partial z}{\partial u}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial u}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial u}
\end{aligned}
$$

$\underline{\text { Implicit differentiation }} F(x, y(x))=c: F_{x}+F_{y} \frac{d y}{d x}=0$ which means $\frac{d y}{d x}=-\frac{F_{x}}{F_{y}}$.
Gradient of $f(x, y, z)$ is the vector $\nabla f=f_{x} \vec{i}+f_{y} \vec{j}+f_{z} \vec{k}$. The directional derivative $D_{\vec{u}} f=\nabla f \cdot \vec{u}$ is a scalar representing the slope of $f(x, y, z)$ in the direction \vec{u}, where \vec{u} is a unit vector. Maximal property: largest value of the directional derivative $D_{\vec{u}} f$ at the point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ occurs in the direction of the gradient, ∇f_{0}, and smallest value occurs in the negative direction of the gradient, $-\nabla f_{0}$. The largest value of the directional derivative at the point P_{0} is the magnitude of the gradient $\left\|\nabla f_{0}\right\|$ and smallest value is negative of the magnitude of the gradient $-\left\|\nabla f_{0}\right\|$.

Local extrema of a function of two variables $z=f(x, y)$: find the critical points P_{0} in the domain by solving simultaneously the equations $f_{x}=0$ and $f_{y}=0$ for (x, y). Test the critical points using the Second partial derivative test where $D=f_{x x} f_{y y}-f_{x y}^{2}$ is evaluated at a critical point P_{0}. There is a relative maximum $f\left(P_{0}\right)$ if at $P_{0}, D>0$ and $f_{x x}<0$, a relative minimum if at $P_{0}, D>0$ and $f_{x x}>0$ and a saddle point if at $P_{0}, D<0$. If $D=0$, test fails.
Absolute extrema of a function of two variables $z=f(x, y)$ on a closed and bounded set S : find the critical points P_{0} in S and on the boundary of S, then evaluate the function at these critical points and boundary points. The largest f value is the absolute maximum and the smallest is the absolute minimum.

Lagrange Multipliers is a method to find a maximum or minimum of a function subject to one or more constraints. Maximize or minimize $f(x, y, z)$ subject to $g(x, y, z)=c=$ constant, then solve $f_{x}=\lambda g_{x}, f_{y}=\lambda g_{y}, f_{z}=\lambda g_{z}$ and $g(x, y, z)=c$ for (x, y, z, λ) and check which point gives the largest (or smallest) f value.

Multiple integration over rectangular regions: $R: a \leq x \leq b, c \leq y \leq d$. Fubini's Theorem: If $f(x, y)$ is continuous on R, then the double integral can be written as an iterated integral:

$$
\iint_{R} f(x, y) d A=\int_{c}^{d} \int_{a}^{b} f(x, y) d x d y=\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x
$$

Multiple integration over nonrectangular region R : $a \leq x \leq b$ and $g(x) \leq y \leq h(x)$.

$$
\iint_{R} f(x, y) d A=\int_{a}^{b} \int_{g(x)}^{h(x)} f(x, y) d y d x
$$

Change the order of integration to $d x d y$.
Polar Coordinates $(r, \theta): r$ is the distance in $x y$ plane from the origin, $r \geq 0, \theta$ is the polar angle measured from the positive x axis counterclockwise, $0 \leq \theta \leq 2 \pi . x=r \cos (\theta), y=r \sin (\theta), r^{2}=x^{2}+y^{2}, \tan (\theta)=\frac{y}{x}, d A=r d r d \theta$.

$$
\iint_{R} f(x, y) d x d y=\iint_{R^{*}} f(r \cos (\theta), r \sin (\theta)) r d r d \theta
$$

Surface area of $z=f(x, y)$ inside the region R in a plane: $\iint_{R} \sqrt{\left[f_{x}(x, y)\right]^{2}+\left[f_{y}(x, y)\right]^{2}+1} d x d y$. Triple integrals:

$$
\iiint_{D} f(x, y, z) d V=\iiint_{D} f(x, y, z) d x d y d z
$$

If $f(x, y, z)=1$, the triple integral is the volume of D. Change order of integration to $d y d x d z$ or $d z d y d x$, etc.
Cylindrical Coordinates: Coordinates on a cylinder (r, θ, z), polar coordinates in x and y but z remains the same. $\overline{x=r \cos (\theta), y=r \sin (\theta)}, z=z, d V=d z r d r d \theta$.

$$
\iiint_{D} f(x, y, z) d x d y d z=\iiint_{D^{*}} f(r \cos (\theta), r \sin (\theta), z) r d z d r d \theta
$$

Spherical Coordinates: Coordinates on a sphere $(\rho, \theta, \phi): \rho$ is distance from origin, $\rho \geq 0, \theta$ is polar angle measured in $x y$ plane from the positive x axis counterclockwise, $0 \leq \theta \leq 2 \pi$ and ϕ is the angle measured from the north pole (positive z axis) toward the south pole (negative z axis), $0 \leq \phi \leq \pi$.
$x=\rho \sin \phi \cos \theta, y=\rho \sin \phi \sin \theta, z=\rho \cos \phi, \quad \rho^{2}=x^{2}+y^{2}+z^{2}, \quad d V=\rho^{2} \sin (\phi) d \rho d \phi d \theta$

$$
\iiint_{D} f(x, y, z) d x d y d z=\iiint_{D *} f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \rho^{2} \sin (\phi) d \rho d \phi d \theta .
$$

Jacobians: Change of Variables: $x=g(u, v)$ and $y=h(u, v)$. Jacobian determinant:

$$
\begin{gathered}
J(u, v)=\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|=\frac{\partial x}{\partial u} \frac{\partial y}{\partial v}-\frac{\partial y}{\partial u} \frac{\partial x}{\partial v} \\
\iint_{D} f(x, y) d y d x=\iint_{D^{*}} f(g(u, v), h(u, v))|J(u, v)| d u d v
\end{gathered}
$$

Vector Field: $\vec{F}(x, y, z)=<M, N, P>\vec{R}(t)=<x(t), y(t), z(t)>$ Use parametric equations for $x(t), y(t)$, and $z(t)$ to define the curve $C, a \leq t \leq b$.
Line integral: $\int_{C} f(x, y, z) d s=\int_{a}^{b} f(x(t), y(t), z(t)) \sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}+\left[z^{\prime}(t)\right]^{2}} d t$.
Line integral: $\int_{C}[f(x, y) d x+g(x, y) d y]=\int_{a}^{b}\left[f(x(t), y(t)) x^{\prime}(t) d t+g(x(t), y(t)) y^{\prime}(t) d t\right]$.
Line integral: $\int_{C} \vec{F} \cdot d \vec{R}=\int_{C}[M d x+N d y+P d z]$.
Several curves: $C=C_{1} \cup C_{2} \cup C_{3}: \int_{C}=\int_{C_{1}}+\int_{C_{2}}+\int_{C_{3}}$.

Review Exercises:

Chapter 11, pp. 910-11 \# 29,35,37,43,47,49,51,55,63,65;
Chapter 12, pp. 1010-13 \#5,9,17,19,21,23,29,35,37,39,40,42,53,61;
Chapter 13, pp. 1098-99 \# 10,23.

