Review for Exam \# 1, Math 2450

Chapters 9.1-9.7,10.1,10.2,10.4,11.1-11.3
Review: Homework 1-4, Webwork 1-3, and Quiz 1.
Topics: Dot product (scalar product, inner product): $\left.\vec{v} \cdot \vec{w}=<v_{1}, v_{2}, v_{3}\right\rangle \cdot\left\langle w_{1}, w_{2}, w_{3}\right\rangle=v_{1} w_{1}+v_{2} w_{2}+$ $v_{3} w_{3}=\|\vec{v}\|\|\vec{w}\| \cos (\theta),\|\vec{v}\|=\sqrt{\vec{v} \cdot \vec{v}}=\sqrt{v_{1}^{2}+v_{2}^{2}+v_{3}^{2}}$.
Cross product (vector product, outer product): $\vec{v} \times \vec{w}=\left|\begin{array}{ccc}\vec{i} & \vec{j} & \vec{k} \\ v_{1} & v_{2} & v_{3} \\ w_{1} & w_{2} & w_{3}\end{array}\right|$.
$\|\vec{v} \times \vec{w}\|=\|\vec{v}\|\|\vec{w}\| \sin (\theta)$. Two nonzero vectors are orthogonal iff their dot product is zero. The cross product of two nonparallel vectors is orthogonal to both of the vectors. Area of a triangle determined by \vec{v} and \vec{w} is $(1 / 2)\|\vec{v} \times \vec{w}\|$. Scalar triple product can be used to find the volume of the parallelepiped determined by \vec{u}, \vec{v} and $\vec{w},|(\vec{u} \times \vec{v}) \cdot \vec{w}|$. Vector projection and scalar projection. Work performed as an object moves along a line with displacement $\overrightarrow{P Q}$ against a force \vec{F} is $W=\vec{F} \cdot \overrightarrow{P Q}=\|\vec{F}\|\|\overrightarrow{P Q}\| \cos (\theta)$
Lines in space: Vector $\vec{v}=\left\langle a, b, c>\right.$ is parallel to a line and the line passes through $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$. An equation for the line in parametric form:

$$
\begin{equation*}
\ell: \quad x=x_{0}+a t, y=y_{0}+b t, z=z_{0}+c t, \tag{1}
\end{equation*}
$$

in symmetric form: $\frac{x-x_{0}}{a}=\frac{y-y_{0}}{b}=\frac{z-z_{0}}{c}$ (only if $a, b, c \neq 0$). Determine whether two lines are skew, parallel, coincident, or intersect in a single point.
Planes in space: Vector $\vec{N}=<A, B, C>$ is normal to the plane that passes through $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$, then an equation for the plane in point-normal form: $A\left(x-x_{0}\right)+B\left(y-y_{0}\right)+C\left(z-z_{0}\right)=0$ or in standard form:

$$
\begin{equation*}
A x+B y+C z+D=0 \tag{2}
\end{equation*}
$$

Distance from a point $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ to a line with equation (1), p. 733: $d_{P_{1}, \ell}=\frac{\left\|\vec{v} \times \overrightarrow{P_{0} P_{1}}\right\|}{\|\vec{v}\|}$
Distance from a point $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ to a plane in standard form (2), p. 731: $d_{P_{1}, \text { plane }}=\frac{\left|A x_{1}+B y_{1}+C z_{1}+D\right|}{\sqrt{A^{2}+B^{2}+C^{2}}}$ Write an equation for a plane containing three points.
Quadric surfaces: cone, sphere, ellipsoid, paraboloid, hyperbolic paraboloid, hyperboloid of one sheet and hyperboloid of two sheets, see Table 9.2 p. 736.
Vector-valued functions: $\vec{F}(t)=x(t) \vec{i}+y(t) \vec{j}+z(t) \vec{k}$ whose graph is a curve in space. Graph the curve traced by $\vec{F}(t)$ by writing the equation in rectangular form.

$$
\begin{gather*}
\text { Position vector : } \vec{R}(t)=x(t) \vec{i}+y(t) \vec{j}+z(t) \vec{k} . \tag{3}\\
\text { Velocity vector : } \vec{V}(t)=\vec{R}^{\prime}(t)=x^{\prime}(t) \vec{i}+y^{\prime}(t) \vec{j}+z^{\prime}(t) \vec{k} . \\
\text { Acceleration vector : } \vec{A}(t)=\vec{R}^{\prime \prime}(t)=x^{\prime \prime}(t) \vec{i}+y^{\prime \prime}(t) \vec{j}+z^{\prime \prime}(t) \vec{k} .
\end{gather*}
$$

Speed: $\|\vec{V}(t)\|=\left\|\vec{R}^{\prime}(t)\right\|=\frac{d s}{d t}$, direction of motion: $\frac{\vec{V}(t)}{\|\vec{V}(t)\|}$. If $\vec{V}\left(t_{0}\right) \neq \overrightarrow{0}$, then $\vec{V}\left(t_{0}\right)$ is tangent to the graph of $\vec{R}(t)$ at $t=t_{0}$. Integration of $\vec{F}(t)=x(t) \vec{i}+y(t) \vec{j}+z(t) \vec{k}$:

$$
\int \vec{F}(t) d t=\left(\int x(t) d t+c_{1}\right) \vec{i}+\left(\int y(t) d t+c_{2}\right) \vec{j}+\left(\int z(t) d t+c_{3}\right) \vec{k}
$$

Unit Tangent vector: $\vec{T}(t)=\frac{\vec{R}^{\prime}(t)}{\left\|\vec{R}^{\prime}(t)\right\|}$. Principal Unit Normal vector: $\vec{N}(t)=\frac{\vec{T}^{\prime}(t)}{\left\|\vec{T}^{\prime}(t)\right\|}$. Vector $\vec{T}(t)$ is tangent to the curve and points in the direction of increasing $t, \vec{N}(t)$ points toward the concave side of the curve, $\vec{T}(t) \cdot \vec{N}(t)=0$. Given $\vec{T}(t)=<a(t), b(t)>$ in the x - y plane, then $\vec{N}(t)=<-b(t), a(t)>$ or $\vec{N}(t)=<b(t),-a(t)>$. Given the position vector $\vec{R}(t)$ in (3), the arclength from t_{0} to t_{1} is $s=\int_{t_{0}}^{t_{1}} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}} d t$. Curvature: $\kappa=\left\|\frac{d \vec{T}}{d s}\right\|=\frac{\left\|\vec{T}^{\prime}(t)\right\|}{\left\|\vec{R}^{\prime}(t)\right\|}=\frac{\left\|\vec{R}^{\prime}(t) \times \vec{R}^{\prime \prime}(t)\right\|}{\left\|\vec{R}^{\prime}(t)\right\|^{3}}$. Plane curve: $\kappa=\frac{\left|f^{\prime \prime}(x)\right|}{\left[1+\left(f^{\prime}(x)\right)^{2}\right]^{3 / 2}}$. The radius of curvature
is $r=1 / \kappa$. A straight line has curvature $\kappa=0$. Osculating circle is the circle tangent to the curve on the concave side having the same curvature and radius equal to $r=1 / \kappa$.
Real-valued functions of several variables: $z=f(x, y)=$ surface in space $\mathbb{R}^{3} ; w=g(x, y, z)=$ hypersurface in $\mathbb{R}^{4} . f(x, y)=c=$ constant $=$ level curve in the $x-y$ plane. $g(x, y, z)=c=$ constant $=$ level surface in $x-y-z$ space. Sketch level curves and level surfaces. Domain and Range of functions. Limits: $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)$. Show a limit does not exist. Determine values (x, y) where $z=f(x, y)$ is continuous or discontinuous.
Partial differentiation: First-order partial derivatives: $f_{x}=\frac{\partial f}{\partial x}, f_{y}=\frac{\partial f}{\partial y}$, Second-order partial derivatives: $f_{x x}=\frac{\partial^{2} f}{\partial x^{2}}, f_{y y}=\frac{\partial^{2} f}{\partial x^{2}}, f_{x y}=\frac{\partial^{2} f}{\partial y \partial x}, f_{y x}=\frac{\partial^{2} f}{\partial x \partial y}$, etc. First-order partial derivatives $f_{x}(x, y)$ and $f_{y}(x, y)$ are slopes of tangent lines at a point on the surface $z=f(x, y)$ in the direction of positive x axis or positive y axis, respectively.

Supplementary Problems: Chapter 9, pp. 744-746 \# 5-23 (odd),27,29, 32,47,55; Chapter 10, pp. 806-807 \# 1,3,7,9,17,19,21,27,29,31,35,37,41,43,45,47,49\&51(curvature),63,69; Chapter 11, pp. 909-910 \# 1,5,7,9,11,15,17, 19,32,33,34.

Some Review Problems

1. Given the vectors $\vec{u}=<-2,1,3>, \vec{v}=<1,1,2>$ and $\vec{w}=<0,1,3>$, compute
(a) the angle between \vec{u} and \vec{v}.
(b) any unit vector perpendicular to \vec{w}.
(c) the volume of the parallelepiped determined by all three vectors.
(d) equation for a plane in standard form that is parallel to \vec{u} and \vec{w} and contains the point $(3,3,-2)$.
2. (a) Identify and sketch the two surfaces: $z=f(x, y)=y-2 x+4, z=f(x, y)=\sqrt{36-x^{2}-9 y^{2}}$.
(b) Sketch the two level curves of $f(x, y)=2^{1-x^{2}+y^{2}}$ when $f(x, y)=1$ and $f(x, y)=4$.
3. Find the distance from the point $P(2,3,4)$ to the plane $x+y+2 z=1$.
4. (a) Determine whether the two lines are parallel, skew or intersect. If they intersect, find the point(s) of intersection. $x=2 t, y=1-3 t, z=2$ and $x=1-t, y=2-t$ and $z=1+t$.
(b) Show that the two planes are perpendicular: $z=x+2 y-2$ and $2 x+2 z=3$.
(c) Write an equation for a line in parametric form that is perpendicular to the plane $z=2 x-5 y+11$ and contains the point $(3,3,-2)$.
5. Find the position and acceleration vectors and speed, $\vec{R}(t), \vec{A}(t),\|\vec{V}(t)\|$ given $\vec{V}(t)=\frac{3}{t} \vec{i}+4 e^{4 t} \vec{k}$ and $\vec{R}(1)=\vec{j}$.
6. Find the unit tangent vector $\vec{T}(t)$ and principal unit normal vector $\vec{N}(t)$ for the curve given by $\vec{R}(t)=<t, t^{3}>$. Sketch the curve. What is curvature at $(1,1)$? Radius of curvature at $(1,1)$? Equation for the osculating circle at $(1,1)$?
7. Find the length of the curve traced by the vector $\vec{R}(t)=e^{t} \vec{i}+e^{t} \cos (\pi t) \vec{j}+e^{t} \sin (\pi t) \vec{k}$ from $t=0$ to $t=2$.
8. (a) Find the limit: $\lim _{(x, y) \rightarrow(2,1)} \frac{x^{4}-16 y^{4}}{x^{2}-4 y^{2}}$. (b) Show the limit does not exist: $\lim _{(x, y) \rightarrow(0,0)} \frac{3 x^{2} y^{2}}{x^{4}+y^{4}}$.
9. Let $f(x, y)=e^{x y} \cos (y)$. Compute the first-order and second-order partial derivatives: $f_{x}, f_{y}, f_{x x}, f_{x y}, f_{y y}$.
