1. Evaluate the integral $\iint_{D}(2 x-y) d A$, where the region $D$ is bounded by the lines $y=x$ and $y=x^{2}$.
2. Find the volume of the region bounded above by the paraboloid $z=18-x^{2}-y^{2}$ and below by the plane $z=2$. Use polar coordinates to evaluate the integral.
3. Change the order of integration, then evaluate the integral $\int_{0}^{1} \int_{\sqrt{y}}^{1} \sqrt{9-x^{3}} d x d y$.
4. The formula for surface area is $S=\iint_{R} \sqrt{\left(f_{x}\right)^{2}+\left(f_{y}\right)^{2}+1} d A$. Find the surface area of the plane $2 x-7 y-z=$ 10 that lies inside the cylinder $x^{2}+y^{2}=9$.
