
Chapter 4: Discrete-Time Branching Processes
Generating functions rather than transition matrices are useful in analysis of branching processes. Offspring
p.g.f.:

f(t) =
∞∑
k=0

pkt
k

Recall f(1) = 1 and m = f ′(1) is the mean number of offspring. The branching process is called subcritical
if m < 1, critical if m = 1, and supercritical if m > 1.
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Figure 1: Sample path of a branching process {Xn}∞n=0. In the first generation, four individuals are
born, X1 = 4. The four individuals in generation one give birth to three, zero, four, and one individuals,
respectively, making a total of eight individuals in generation two, X2 = 8.

Theorem 1 (Branching Process Theorem) Let X0 = 1. Assume f(0) = p0 > 0 and p0 + p1 < 1.

(i) If m ≤ 1, then limn→∞ Prob{Xn = 0} = 1.

(ii) If m > 1, then limn→∞ Prob{Xn = 0} = q, where q = f(q) is the unique fixed point in the interval
(0, 1).

To verify this theorem, we show that given X0 = 1, then PXn(t) = fn−1(f(t)) = fn(t), the p.g.f. of Xn

is the n-fold composition of the offspring p.g.f. Then p0(n) = PXn(0) = fn(0) and p0(n) = f(p0(n − 1)).
The sequence {p0(n)} is an increasing function, bounded above by one and therefore, has a limit q. This
limit is a fixed point of f , f(q) = q.

If X0 = N and m > 1, then limn→∞ p0(n) = limn→∞ Prob{Xn = 0} = qN . The conditional expectation
E(Xn+1|Xn) = mXn, E(Xn+1) = mE(Xn). If the growth rate varies with n, with a mean mn, then
E(Xn+1) = mnE(Xn).
Multitype Branching Process, k different types: X(n) = (X1(n) . . . , Xk(n)). The offspring random
variable for parent of type i with offspring of type l is Yil. Offspring p.g.f.s:

fi(t1, . . . , tk) =
∞∑
sk

· · ·
∞∑
s1

Pi(s1, . . . , sk)ts11 · · · t
sk
k

Pi(s1, . . . , sk) = Prob{Yi1 = s1, . . . , Yik = sk}.

We assume not all of the offspring p.g.f.s are simple, where simple function means that fi(0, . . . , 0) = 0
and fi is linear in the t variables. Expectation matrix M = (mij), where

mji =
∂fi
∂tj

∣∣∣∣
t1=1,...,tk=1

Assume M is irreducible. Denote the spectral radius of M as ρ(M), the maximum modulus of the eigen-
values of M .The multitype branching process is called subcritical if ρ(M) < 1, critical if ρ(M) = 1 and
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supercritical if ρ(M) > 1. In addition, if matrix M is regular, some positive integer power of M is strictly
positive, Mn0 > 0, then the following theorem holds.

Theorem 2 If not all p.g.f.s are simple, matrix M is regular and Xi(0) = ri ≥ 0, then the probability of
extinction depends on ρ(M) = λ.

(i) If ρ(M) ≤ 1, then limn→∞ Prob{X(n) = 0} = 1.

(ii) If m > 1, then limn→∞ Prob{X(n) = 0} = qr11 · · · q
rk
k where qi = fi(q1, . . . , qk), i = 1, . . . , k is the

unique fixed point in the interval [0, 1).

In addition, the expectation of the process satisfies E(X(n+1)) = ME(X(n)) or E(X(n)) = MnE(X(0)).
Thus, even though on the average the population may increase geometrically, ρ(M) > 1, there is still a
positive probability of extinction (part (ii) of the theorems). See Chapter on Branching Processes.
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Chapter 5: Continuous-Time Markov Chains (CTMCs)
Discrete random variable X(t), t ∈ [0,∞). Probabilities pi(t) = Prob{X(t) = i}. Transition probability:
pji(t, s) = Prob{X(t) = j|X(s) = i}, s < t. We will assume time-homogenous transition probabilities
pji(t, s) = pji(t− s). The transition matrix is a stochastic matrix:

P (t) = (pij(t)) =

p00(t) p01(t) · · ·
p10(t) p11(t) · · ·

...
...

...

 ,

where
pji(∆t) = δji + qji∆t+ o(∆t)

is an infinitesimal transition probability. The infinitesimal generator matrix:

Q = (qij) =

q00 q01 · · ·
q10 q11 · · ·
...

...
...

 , Q = lim
∆t→0

P (∆t)− I
∆t

The column sums of Q equal zero.

Forward Kolmogorov differential equations:
dP (t)
dt

= QP (t)

Backward Kolmogorov differential equations:
dP (t)
dt

= P (t)Q
In physics and chemistry, the forward Kolmogorov differential equations are often referred to as the Master
equation.

The embedded DTMC is used to define irreducible, recurrent, and transient states or chains for the
associated CTMC. Let Yn denote the random variable for the state of a CTMC {X(t) : t ∈ [0,∞)} at the
time of the nth jump, Yn = X(Wn). (See Figure 2.) The set of discrete random variables {Yn}∞0 is the
embedded Markov chain.

                               T0                   T1               T2            T3

                  0        W1              W2     W3         W4      

Figure 2: Sample path of a CTMC, illustrating waiting times {Wi} and interevent times, {Ti}.

A CTMC is irreducible, recurrent or transient if the corresponding embedded Markov chain has these
properties. Some differences in the dynamics of a CTMC as opposed to a DTMC are the possibility of a
finite-time blow up in a CTMC (explosive process) and the fact that CTMC are not periodic. See Figure 3.
The embedded MC cannot be used to classify chains as positive recurrent or null recurrent. This latter
classification depends on the mean recurrence time µii.
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Figure 3: One sample path of a continuous time Markov chain that is explosive.

Theorem 3 (Basic Limit Theorem for CTMCs) If the CTMC {X(t) : t ∈ [0,∞)} is nonexplosive
and irreducible, then for all i and j,

lim
t→∞

pij(t) = − 1
qiiµii

, (1)

where µii is the mean recurrence time, 0 < µii ≤ ∞. In particular, a finite, irreducible CTMC is nonex-
plosive and the limit (1) exists and is positive.

If the DTMC is nonexplosive and positive recurrent, it has a limiting positive stationary distribution
π satisfying Qπ = 0, where

πi = − 1
qiiµii

.

Poisson process with X(0) = 0, pi+1,i(∆t) = λ∆t + o(∆t) and pi(t) = e−λt(λt)i/i! has generator
matrix

Q =


−λ 0 0 · · ·
λ −λ 0 · · ·
0 λ −λ · · ·
...

...
...

...

 .

The associated embedded Markov chain has a transition matrix

T =


0 0 0 · · ·
1 0 0 · · ·
0 1 0 · · ·
...

...
...

...

 .

The Poisson process is transient.
A finite CTMC with two states {1, 2}. The generator matrix

Q =
(
−a b
a −b

)
, a, b > 0

The CTMC is irreducible and positive recurrent. The limiting stationary distribution can be found from
the forward Kolmogorov differential equations by solving for the stationary distribution Qπ = 0. In this

case π = (b/(a+ b), a/(a+ b))tr. The mean recurrence times are µii =
a+ b

ab
, i = 1, 2.
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To generate sample paths, we must know the time between jumps and the state to which the process
jumps. The Markov assumption implies the interevent time is exponentially distributed because the ex-
ponential distribution has the “memoryless property”. Let Ti be the continuous random variable for the
time until the i+ 1st event. See Figure 2.

Theorem 4 (Interevent Time) Assume
∑

j 6=n pjn(∆t) = α(n)∆t+ o(∆t). Then the cumulative distri-
bution function for the interevent time Ti is Fi(t) = 1− exp(−α(n)t) with mean and variance

µTi =
1

α(n)
and σ2

Ti
=

1
[α(n)]2

Theorem 5 (Interevent Time Simulation) Let U ∼ U [0, 1] be the uniform distribution on [0,1] and
Ti the continuous random variable for interevent time with state space [0,∞). Then

Ti = F−1
i (U) = − ln(U)

α(n)
.

Simple Birth and Death Markov Chain: In the simple birth and death process, an event can be
a birth or a death. Let X(0) = N . The infinitesimal transition probabilities are

pi+j,i(∆t) = Prob{∆X(t) = j|X(t) = i}

=


µi∆t+ o(∆t), j = −1
λi∆t+ o(∆t), j = 1
1− (λ+ µ)i∆t+ o(∆t), j = 0
o(∆t), j 6= −1, 0, 1.

Use two random numbers, u1 and u2, from the uniform distribution U(0, 1) to determine the interevent
time and the state to which the process jumps. In MATLAB, indices begin from 1, so instead of writing
t(0), we use t(1). Consider the simple birth and death chain, in a MATLAB program, t(1) = 0, and the time
to the next event is t(2) = t(1)+ln(u1)/(α(n)), where α(n) = λn+µn, given the process is in state n. Since
there are two events, to determine whether there is a birth or a death, the unit interval is divided into two
subintervals, one subinterval has probability λ/(λ+ µ) and the other has probability µ/(λ+ µ). Generate
a uniform random number u2. If u2 < λ/(λ+µ), then this random number lies in the first subinterval and
there is a birth, otherwise if u2 > λ/(λ+ µ), the random number lies in the second subinterval and there
is a death. This concept can be easily extended to k > 2 events. In a MATLAB program with k events
the unit interval must be divided into k subintervals, each with predetermined probability for i = 1, . . . , k
that depends on the current state and the transition probabilities. For example, suppose there are four
events with the following rates ai(n), i = 1, 2, 3, 4 which depend on the current state n. The probabilities
of these four events are ai(n)/a(n), a(n) =

∑
i ai(n), i = 1, 2, 3, 4. The subinterval [0, 1] is subdivided into

four subintervals with the following endpoints:

0,
a1

a
,
a1 + a2

a
,
a1 + a2 + a3

a
, 1.

Therefore, in a MATLAB program:

if u2<a1/a, then event 1 occurs
elseif u2>=a1/a & u2<(a1+a2)/a, then event 2 occurs
elseif u2>=(a1+a2)/2 & u2<(a1+a2+a3)/a, then event 3 occurs
else u2>=(a1+a2+a3)/a, then event 4 occurs.

The subintervals change each time the process changes state n. If the number of events are large, deciding
which event occurs can become quite lengthy and there are ways to speed up the process of selecting a
particular event.
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%MatLab program: simple birth and death process
clear all
x0=5; b=1; d=0.5; % initial and parameter values
for j=1:3 % Three sample paths
clear x t
n=1; t(1,j)=0; x(n)=x0; % starting values
while x(n)>0 & x(n)<50; % continue until the process hits zero or reaches 50

u1=rand; u2=rand; % two uniform random numbers
t(n+1,j)=-log(u1)/(b*x(n)+d*x(n))+t(n,j);
if u2< b/(b+d);

x(n+1)=x(n)+1;
else

x(n+1)=x(n)-1;
end
n=n+1;

end
s=stairs(t(:,j),x,’r-’,’Linewidth’,2);
hold on
end
xlabel(’Time’); ylabel(’Population size’);
hold off

Figure 4: Three sample paths of the simple birth and death process, X(0) = 5, λ = b = 1, µ = d = 0.5.
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