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Euler-Maruyama Method for Numerical Solution of an
Itô SDE

dX(t) = α(X(t), t)dt+ β(X(t), t)dW (t)

Assume conditions (a) and (b) for existence and uniqueness of an Itô SDE are satisfied

and in addition

(c) |α(x, t1)−α(x, t2)|+ |β(x, t1)−β(x, t2)| ≤ K|t1−t2|1/2, for all t1, t2 ∈ [0, T ]

and x ∈ R.

Theorem 1. Assume that the Itô SDE satisfies conditions (a), (b), and (c). Euler-

Maruyama method approximates a sample path X(t) at time points ti, X(ti) ≈ Xi,

on the interval [0, T ]:

Xi+1 = Xi + α(Xi, ti) ∆t+ β(Xi, ti)
√

∆t ηi (1)

for i = 0, 1, . . . , k − 1, where 0 = t0 < t1 < . . . < tk−1 < tk = T , ∆t =

ti+1 − ti = T/k, X0 = X(0), and ηi ∼ N(0, 1) with error:

E
(
|X(ti)−Xi|2 | X(ti−1) = Xi−1) = O((∆t)

2
) (2)

and

E
(
|X(ti)−Xi|2 | X(0) = X0) = O(∆t) (3)
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Relationship Between a CTMC Model and an SDE
Model

Consider a birth and death process. Recall for a CTMC model the
infinitesimal transition probabilities are

pji(∆t) =


b(i)∆t+ o(∆t), j = i+ 1
d(i)∆t+ o(∆t), j = i− 1
1− [b(i) + d(i)]∆t+ o(∆t), j = i
o(∆t), otherwise.

The probability mass function pi(t) = Prob{X(t) = i} satisfies the forward
Kolmogorov differential equatons (FKDE):

dpi
dt

= pi−1b(i− 1) + pi+1d(i+ 1)− pi[b(i) + d(i)]

for i = 1, 2, . . . , N and dp0/dt = p1d(1).
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The FKDEs for the CTMC Model lead to the FKDE
associated with a Diffusion Process

The FKDEs can be expressed as a finite difference scheme with ∆i = 1.

dpi

dt
= pi−1b(i− 1) + pi+1d(i+ 1)− pi[b(i) + d(i)]

= −
{pi+1[b(i+ 1)− d(i+ 1)]− pi−1[b(i− 1)− d(i− 1)]}

2∆i

+
1

2

{pi+1[b(i+ 1) + d(i+ 1)]− 2pi[b(i) + d(i)] + pi−1[b(i− 1) + d(i− 1)]}
(∆i)2

.

Let i = x, ∆i = ∆x and pi(t) = p(x, t). Then the limiting form of
the preceding equation (as ∆x→ 0) is the forward Kolmogorov differential
equation for p(x, t):

∂p(x, t)

∂t
= − ∂

∂x
{[b(x)− d(x)]p(x, t)}+

1

2

∂2

∂x2
{[b(x) + d(x)] p(x, t)} .

The coefficient of p(x, t) in the first term, [b(x)− d(x)], is the infinitesimal
mean and the coefficient of p(x, t) in the second term, [b(x) + d(x)], is the
infinitesimal variance.
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The FKDE leads to an Itô SDE

In a small period of time, the infinitesimal mean, µ∆t = [b(x) − d(x)]∆t
and the infinitesimal variance is σ2∆t = [b(x) + d(x)]∆t. Assume there are
a large number of changes in a small period of time and we can apply the
Central Limit Theorem:

∆X(t) ∼ N(µ∆t, σ
√

∆t).

Then
X(t+ ∆t) = X(t) + µ∆t+ σ

√
∆tη,

where η ∼ N(0, 1). Expressed in terms of the birth and death process,

X(t+ ∆t) = X(t) + [b(X)− d(X)]∆t+
√

[b(X) + d(X)]∆tη.

This latter expression is the Euler-Maruyama method for numerically solving
the following Itô SDE:

dX(t) = [b(X)− d(X)]∆t+
√

[b(X) + d(X)]dW (t).
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Logistic SDE

The deterministic model:
dn

dt
= rn

(
1−

n

K

)
,

where n(t) is the population size at time t. Let X(t) denote the random variable for the

total population size.

(a) Suppose the probability of a birth or death in a small time interval is b(X) = rX ∆t

or d(X) = (rX2/K) ∆t, respectively. The SDE for logistic growth is

dX = rX

(
1−

X

K

)
dt+

√
rX

(
1 +

X

K

)
dW, X ∈ [0,∞). (4)

(b) Suppose the probability of a birth or a death in a small time interval is b(X) =

rX(1−X/2K) ∆t or d(X) = (rX2/2K) ∆t, respectively. The SDE for logistic

growth is

dX = rX

(
1−

X

K

)
dt+

√
rX dW, X ∈ [0, 2K]. (5)
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The forward Kolmogorov differential equations corresponding to the SDEs (4) and (5)

are
∂p

∂t
= −

∂

∂x

[
rx

(
1−

x

K

)
p

]
+

1

2

∂2

∂x2

[
rx

(
1 +

x

K

)
p

]
,

x ∈ (0,∞) and

∂p

∂t
= −

∂

∂x

[
rx

(
1−

x

K

)
p

]
+

1

2

∂2

∂x2
[rxp],

x ∈ (0, 2K), respectively. It is easy to see that the infinitesimal variance is larger in case

(a) than in case (b).

Euler’s method applied to cases (a) and (b) yields the following iterative schemes:

Xi+1 = Xi + rXi

(
1−

Xi

K

)
∆t+

√
rXi

(
1 +

Xi

K

)√
∆t ηi, Xi ∈ [0,∞)

and

Xi+1 = Xi + rXi

(
1−

Xi

K

)
∆t+

√
rXi

√
∆t ηi, Xi ∈ [0, 2K],

respectively, for i = 0, 1, 2, . . . , k − 1.
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Three samples paths for the SDEs (a) and (b) on the interval [0,10] are
graphed (Euler-Maruyama method with with ∆t = 0.01). Note the larger
variation in the solutions for (a) than for (b).
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Figure 1: Three stochastic realizations of the logistic model for case (a)
and case (b) with r = 1, K = 10, and X(0) = 10.
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Before Continuing, We Note a Relationship between
Stratonovich SDE and Itô SDE.

In general, a Stratonovich SDE,

dSX(t) = α(X(t), t) dt+ β(X(t), t) dW (t)

can be converted into an Itô SDE

dX(t) =

[
α+

1

2
β
∂β

∂x

]
(X(t), t) dt+ β(X(t), t) dW (t)

• Itô’s Formula only applies to an Itô SDE.

• Our derivation method gives rise to Itô SDEs.
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Formulation of Multivariate SDE Processes

For a bivariate diffusion process {X1(t), X2(t)) : t ∈ [0,∞)}, there is an
associated joint p.d.f. p(x1, x2, t). Let X(t) = (X1(t), X2(t))T . Suppose
the diffusion process has infinitesimal mean

E(∆X) = E

(
∆X1

∆X2

)
=

(
f1(X1, X2, t)
f2(X1, X2, t)

)
∆t = f∆t

and infinitesimal covariance

E(∆X(∆X)T )∆t = E

(
(∆X1)2 ∆X1∆X2

∆X1∆X2 (∆X2)2

)
=

(
σ11 σ12

σ21 σ22

)
∆t = Σ∆t

Matrix Σ is symmetric σij = σji.

TTU 10



The FKDE for this bivariate diffusion process with associated joint p.d.f.
p(x1, x2, t) is

∂p(x1, x2, t)

∂t
= −

∂
[
f1p
]

∂x1
−
∂
[
f2p
]

∂x2

+
1

2

[
∂2[σ11p]

∂x2
1

+ 2
∂2σ12p]

∂x1∂x2
+
∂2[σ22p]

∂x2
2

]
or

∂p(x1, x2, t)

∂t
= −

2∑
i=1

∂[fip
]

∂xi
+

1

2

2∑
i=1

2∑
j=1

∂2 [σijp]

∂xi∂xj
.

It is easy to see how to generalize the FKDE for multivariate processes
{(X1, X2, . . . , Xn) : t ∈ [0,∞)}
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The Covariance Matrix can be Expressed as Σ = GGT

which allows for Different but Equivalent Itô SDEs.

Equivalent Itô SDE formulations is in the sense that the Itô SDEs
generate the same sample paths and have the same joint pdf p(x1, x2, t).

Suppose Σ = GGT , where G = (gij) is a 2×m matrix:

σij =

2∑
l=1

gilgjl.

Then the FKDE is

∂p(x1, x2, t)

∂t
= −

2∑
i=1

∂[fip
]

∂xi
+

1

2

2∑
i=1

2∑
j=1

∂2

∂xi∂xj

[
p

2∑
l=1

gilgjl

]
.

Thus, the solution p(x1, x2, t) to the FKDE depends on fi and gij. The
corresponding Itô SDE for this bivariate process {X(t) : t ∈ [0,∞)} is

dX(t) = f(X, t)dt+G(X, t)dW (t).
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Note that the Itô SDE is a vector SDE:

dX(t) = f(X, t)dt+G(X, t)dW (t).

dX(t) is of dimension 2×1, f(X, t)dt is 2×1, G(X, t) is 2×m and dW (t)
is m × 1. In particular dW (t) = (dW1(t), . . . , dWm(t))T is a vector of m
independent Wiener processes.

The matrix G can be easily generated directly from the changes that
occur in the process, births, deaths, immigration, emigration, transitions,
etc. We will give two examples illustrating how to formulate Itô SDEs
from first principles and show that the Itô SDE directly relates to the ODE
model and to the CTMC model – SIR epidemic Model and Lotka-Volterra
Competition.
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Consider an SIR Epidemic Model.

ODE model:

dS

dt
= − β

N
SI

dI

dt
=

β

N
SI − γI

dR

dt
= γI

Basic Reproduction Number:

R0 =
β

γ

There is an epidemic (an increase in number of infectives) if R0
S(0)

N
> 1,

limt→∞ I(t) = 0.
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CTMC SIR Epidemic Model

S(t) + I(t) + R(t) = N = maximum population size.

Since R = N − S − I, the process is bivariate. Let S(t) and I(t)
denote discrete random variables for the number of susceptible and infected
individuals, respectively with joint probability function

p(s,i)(t) = Prob{S(t) = s, I(t) = i}

where R(t) = N − S(t) − I(t). For this stochastic process, we define
transition probabilities as follows:

p(s+k,i+j),(s,i)(∆t) = Prob{(∆S,∆I) = (k, j)|(S(t), I(t)) = (s, i)}

=


βi(N − i)∆t/N + o(∆t), (k, j) = (−1, 1)

γi∆t+ o(∆t), (k, j) = (0,−1)

1− [βi(N − i)/N + γi]∆t+ o(∆t), (k, j) = (0, 0)

o(∆t), otherwise
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Next we Formulate Itô SDEs

We find the infinitesimal mean and infinitesimal variance. for the bivariate
process {(S(t), I(t)) : t ∈ [0,∞)}.

Changes (∆S,∆I) Probability
(−1, 1) (βSI/N)∆t
(0,−1) γI∆t

Let X(t) = (∆S(t),∆I(t))T . Then

E(∆X(t)) =

(
−βSI/N

βSI/N − γI

)
∆t = f∆t

E(∆X(∆X)T ) =

(
βSI/N −βSI/N
−βSI/N βSI/N + γI

)
∆t = Σ∆t

Consider the specific changes listed in the table, a transmission and a
recovery. Define G in terms of those two changes but use square roots so
that GGT = Σ:

G =

(
−
√
βSI/N 0√
βSI/N −

√
γI

)

TTU 16



Then the Itô SDE take the following form:

dX(t) = f(X(t), t)dt+G(X(t), t)dW (t)

dS = −[βSI/N ]dt−
√
βSI/NdW1

dI = [βSI/N − γI]dt+
√
βSI/NdW1 −

√
γIdW2,

where W1 and W2 are two independent Wiener processes,

G =

(
−
√
βSI/N 0√
βSI/N −

√
γI

)

GGT = Σ =

(
βSI/N −βSI/N
−βSI/N βSI/N + γI

)
.

If the terms associated with the Wiener processes are dropped, then we
have the ODE model.
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A Lotka-Volterra Competition Model

ODE model:

dx1

dt
= x1(r1 − a11x1 − a12x2)

dx2

dt
= x2(r2 − a21x1 − a22x2),

As in the case of logistic growth, it is necessary to define the contribution
to birth and to death. We use the simplest choice for birth and death
rates. Assume b1 = r1X1, d1 = X1(a11X1 + a12X2), b2 = r2X2, d2 =
X2(a21X1 + a22X2). We can write these in tabular form as follows:

Changes (∆X1,∆X2) Probability
(1, 0) r1X1∆t

(−1, 0) X1(a11X1 + a12X2)∆t
(0, 1) r2X2∆t

(0,−1) X2(a21X1 + a22X2)∆t
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The infinitesimal mean and variance are

E(∆X) =

(
r1X1 −X1(a11X1 + a12X2)

r2X2 −X2(a21X1 + a22X2)

)
∆t = f∆t

E(∆X(∆X)
T
) =

(
X1(r1 + a11X1 + a12X2) 0

0 X2(r2 + a21X1 + a22X2)

)
∆t = Σ∆t

Matrix G can be chosen as follows:

G1 =

(√
r1X1 −

√
X1(a11X1 + a12X2) 0 0

0 0
√
r2X2 −

√
X2(a21X1 + a22X2)

)
or as

G2 =

(√
X1(r1 + a11X1 + a12X2) 0

0
√
X2(r2 + a21X1 + a22X2)

)
The system of Itô SDEs for Lotka-Volterra competition based matrix G2:

dX1 = X1(r1 − a11X1 − a12X2)dt+
√
X1(r1 + a11X1 + a12X2) dW1

dX2 = X2(r2 − a21X1 − a22X2)dt+
√
X2(r2 + a21X1 + a22X2) dW2,

X1(t), X2(t) ∈ [0,∞).
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Figure 2: A sample path of the Lotka-Volterra competition model over
time and in the phase plane with parameter values a10 = 2, a20 = 1.5,
a11 = 0.03, a12 = 0.02, a21 = 0.01, a22 = 0.04, X1(0) = 50, and
X2(0) = 25.
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Last Example: Population Genetics Process.

We shall derive the Kolmogorov differential equations for the allele
frequencies X(t) of a population assuming random mating and no selection
nor mutation. Assume that the population is diploid; each individual has
two copies of the chromosomes. Assume that the gene is determined by a
single locus with only two alleles, A and a and three possible genotypes,

AA, Aa, and aa.

In addition, assume the total population size is N . The total number
of alleles equals 2N . Let Y (t) denote the number of A alleles in the
population in generation t and X(t) denote the proportion or frequency of
A alleles in the population, X(t) = Y (t)/(2N). Suppose individuals mate
randomly and generations are nonoverlapping. The number of alleles in
generation t+ 1 is derived by sampling with replacement from the alleles in
generation t. Given X(t) = x, then Y (t + 1) has a binomial distribution,
b(2N, x); that is,

Y (t+ 1) ∼ b(2N, x).
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Based on these assumptions the drift and diffusion coefficients a(x) and b(x)

(infinitesimal mean and variance) can be derived.

Let ∆Y (t) = Y (t + 1) − Y (t) and ∆X(t) = X(t + 1) − X(t). Then given

X(t) = x, Y (t) = 2Nx and applying the formula for the mean of a binomial distribution:

E(Y (t+ 1)|X(t) = x) = 2Nx

E(∆Y (t)|X(t) = x) = 2Nx− 2Nx = 0.

Then E([∆Y (t)]2|X(t) = x) equals E(Y 2(t+1)−2Y (t+1)Y (t)+Y 2(t)|X(t) =

x) which can be simpilfied to

E([∆Y (t)]
2
) = E(Y

2
(t+ 1))− 2(2Nx)(2Nx) + 4N

2
x

2

= E(Y
2
(t+ 1))− 4N

2
x

2
= E(Y

2
(t+ 1))− E(Y (t+ 1))

2
.

But this is just the variance of Y (t + 1) which applying the formula for the variance

of the binomial distribution gives

E([∆Y (t)]
2|X(t) = x) = V ar(Y (t+ 1)|X(t) = x)

= 2Nx(1− x).
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Because X(t) = Y (t)/(2N),

E(∆X(t)|X(t) = x) =
1

2N
E(∆Y (t)|X(t) = x) = 0 = a(x)

E([∆X(t)]
2|X(t) = x) =

1

(2N)2
E([∆Y (t)]

2|X(t) = x)

=
2Nx(1− x)

(2N)2
=
x(1− x)

2N
= b(x).

Hence, the pdf p(x, t) for the population genetics process satisfies

∂p

∂t
=

1

4N

∂2(x(1− x)p)

∂x2
, 0 < x < 1, (6)

where p(x, 0) = δ(x − x0). Note that the forward Kolmogorov differential equation

is singular at the boundaries, x = 0 and x = 1. Both boundaries are exit boundaries.

At the states zero or one, there is fixation of either the allele a or A, respectively. The

solution p(x, t) was derived by Kimura (1955), a complicated expression depending on

the hypergeometric function. We shall examine the solution behavior of p(x, t) through

the corresponding Itô SDE for this process.
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The Itô SDE for Population Genetics Process.

The Itô SDE has the form

dX(t) =

√
X(t)(1−X(t))

2N
dW (t), X(t) ∈ [0, 1],

where X(0) = x0, 0 < x0 < 1. The boundaries 0 and 1 are absorbing [e.g.,
if X(t) = 0 (or 1), then X(t + τ) = 0 (or 1) for τ > 0]. Euler-Maruyama
method is used to numerically solve this SDE. The sample paths illustrate
random genetic drift.
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Figure 3: Three sample paths, X(0) = 1/2 and N = 100.
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Approximation of the p.d.f. of frequency of allele A, t = 10, 50, 200
based on 10,000 sample paths.
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Figure 4: X(0) = 1/2 and N = 100. Approximate probability histograms at

t = 10, 50, and 200.
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The Mean is Constant.

It was shown by Kimura (1955, 1994), for large t, that

p(x, t) ≈ Ce−t/(2N), 0 < x < 1.

The pdf is approximately constant and very small when 0 < x < 1 and t is
large. The probability of fixation at either x = 0 and x = 1 approaches one
as t→∞, i.e., p(x, t) tends to infinity at x = 0 and x = 1 and to zero for
0 < x < 1 as t approaches infinity. When X(0) = 1/2, fixation at 0 or 1
is equally likely; the probability distribution is symmetric about x = 1/2. It
follows from the properties of the Wiener process that the mean equals the
initial proportion:

E(X(t)) = E

[
X(0) +

∫ t

0

√
X(t)(1−X(t))

2N
dW (t)

]
= X(0).

In deterministic population genetics, this equilibrium is referred to as
a Hardy-Weinberg equilibrium. At Hardy-Weinberg equilibrium there is
random mating, no mutation, and no selection; the proportion of alleles
stays constant in the population.

TTU 26



Thank you.
———————

It has been my pleasure to be your teacher this
past academic year.

TTU 27


