
Chapter 7 Biological Applications of CTMC Models:

Continuous-Time Branching Process: Let P(z, t) be the p.g.f. for X(t),

P(z, t) = p0(t) + p1(t)z + p2(t)z2 + · · ·

and f(z) be the offspring p.g.f.,
f(z) = q0 + q1z + q2z

2 + · · · .

Note that pi(t) and qi are not the same! pi(t) = Prob{X(t) = i} and qi = Prob{Y = i}, where Y represents
the random variable for the number of offspring produced by one individual. We changed notation to qi for
the probability instead of pi so there is no confusion with pi(t). As in discrete-time branching processes, the
p.g.f. is a composition of p.g.f.s., P(z, t+ ∆t) = P(P(z,∆t), t). We can derive the backward Kolomogorov
differential equation satisfied by P(z, t),

∂P(z, t)
∂t

= λ[f(P(z, t))− P(z, t)],

where λ is the parameter in the exponential waiting time between events, g(t) = λe−λt. (See Chapter 7 for
a derivation, equation (7.3).) At time t = 0, P(z, 0) = z or X(0) = 1. We assume that individuals produce
offspring independently of others and have the same offspring p.g.f. for all time. Note however, that
this assumption is only realistic for small population sizes. A similar theorem applies to continuous-time
Markov branching process as it does for discrete-time.

Theorem 1 Suppose {X(t) : t ∈ [0,∞)} is a nonexplosive, continuous-time Markov branching process
with X(0) = 1. Assume f is the p.g.f. of the offspring distribution, where m = f ′(1) and P(z, t) is the
p.g.f. of X(t) [f(0) = q0 > 0 and q0 + q1 < 1]. If m ≤ 1, then

lim
t→∞

Prob{X(t) = 0} = lim
t→∞

p0(t) = 1

and if m > 1, then there exists a q satisfying f(q) = q such that

lim
t→∞

Prob{X(t) = 0} = lim
t→∞

p0(t) = q < 1.

Recall that the branching process is called subcritical if m < 1, critical if m = 1 and supercritical if m > 1.
It is the supercritical case that is of interest in our applications.

Simple Birth and Death Process: Let λ > 0 be the per capita birth rate and µ > 0 be the per
capita death rate of an individual, pi+1,i(∆t) = λi∆t+ o(∆t) and pi−1,i(∆t) = µi∆t+ o(∆t). The proba-
bility of a birth is λ/(λ+µ) and the probability of a death is µ/(λ+µ). The waiting time distribution for
a birth or a death is g(t) = (λ + µ)e−(λ+µ)t. Thus, we define the offspring p.g.f. as in a birth and death
process as follows:

f(z) =
µ

λ+ µ
+

λ

λ+ µ
z2.

An individual either dies with probability µ/(λ+µ) or survives and gives birth with probability λ/(λ+µ).
There is an important difference in this offspring p.g.f. and the one for the discrete-time branching process.
For this p.g.f., a single offspring does not replace the parent but adds to the population size. Here the
waiting time parameter in the exponential distribution is µ + λ. Also, m = f ′(1) = 2λ/(µ + λ) > 1 iff
λ > µ. In this case, the fixed point q of f(q) = q is µ/λ. The probability of ultimate extinction given
X(0) = N is (µ/λ)N ,

lim
t→∞

p0(t) =
(µ
λ

)N
.
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Note that the preceding result agrees with p.g.f. of X(t) for the simple birth and death process given in
Chapter 6.

SIS Epidemic Model: For the deterministic SIS epidemic model, the differential equations are

dS

dt
= − β

N
SI + γI

dI

dt
=

β

N
SI − γI =

(
β
S

N
− γ
)
I.

The value R0 =
β

γ
is called the basic reproduction number. This system has two equilibria, (S̄, Ī) = (N, 0)

and (N/R0, N(1 − 1/R0) if R0 > 1. If R0 > 1, then there is an outbreak and solutions approach the
endemic equilibrium and if R0 ≤ 1, there is no outbreak. For the CTMC SIS epidemic model, let

Prob{∆I(t) = j|I(t) = i}

=



β

N
i(N − i) ∆t+ o(∆t), j = 1

γi∆t+ o(∆t), j = −1

1−
[
β

N
i(N − i) + γi

]
∆t

+o(∆t), j = 0
o(∆t), j 6= −1, 0, 1,

where i ∈ {0, 1, . . . , N}. The SIS epidemic model is a birth and death process with

λi =
β

N
i(N − i) and µi = γi,

for i = 0, 1, . . . , N . There is a single absorbing state at zero, limt→∞ p0(t) = 1. The infectious class always
approaches zero (this is true for the deterministic model as well). However, at the initiation of an outbreak,
I(t) behaves like a simple birth and death process. Consider only the state I when S ≈ N , then for the
deterministic model,

dI

dt
= βI − γI = (β − γ)I. (1)

As noted, the corresponding CTMC model for I behaves like a simple birth and death process, where
β = λ and γ = µ, provided N is large. Thus, using branching process theory for the simple birth and
death process we can approximate the dynamics at the beginning of a potential outbreak. What is the
probability that I hits zero (no outbreak)? The probability of absorption from branching process theory
tells us that the probability of absorption as t→∞ (no outbreak) given I(0) = 1 is µ/λ = γ/β = 1/R0 if
R0 > 1. If I(0) = k, then the probability of no outbreak is (1/R0)k. The process either hits zero rapidly
or grows. Even though this is an asymptotic approximation, it is a good prediction for probability of an
outbreak:

Prob{Outbreak|I(0) = k} ≈ 1− (1/R0)k

Although this estimate is for the SIS epidemic model, it also applies to the SIR or SIRS epidemic models,
provided the equation for infectives I, equation (1), leads to a simple birth and death approximation with
I(0) small and S(0) ≈ N large.
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