Chapter 7 Biological Applications of CTMC Models:

Continuous-Time Branching Process: Let P(z,t) be the p.g.f. for X(¢),
P(z,t) = po(t) + p1(t)z + pa(t)2* + - -

and f(z) be the offspring p.g.f.,
fR)=qw+az+q@l+---.

Note that p;(t) and g; are not the same! p;(t) = Prob{X(¢) = i} and ¢; = Prob{Y = i}, where Y represents
the random variable for the number of offspring produced by one individual. We changed notation to g; for
the probability instead of p; so there is no confusion with p;(¢). As in discrete-time branching processes, the
p.g.f. is a composition of p.g.f.s., P(z,t+ At) = P(P(z, At),t). We can derive the backward Kolomogorov
differential equation satisfied by P(z,t),

OP(z,t)

— = Af(P(2,1) = Pe. b)),

where ) is the parameter in the exponential waiting time between events, g(t) = Ae™*. (See Chapter 7 for
a derivation, equation (7.3).) At time t = 0, P(z,0) = z or X(0) = 1. We assume that individuals produce
offspring independently of others and have the same offspring p.g.f. for all time. Note however, that
this assumption is only realistic for small population sizes. A similar theorem applies to continuous-time
Markov branching process as it does for discrete-time.

Theorem 1 Suppose {X(t) : ¢t € [0,00)} is a nonexplosive, continuous-time Markov branching process
with X(0) = 1. Assume f is the p.g.f. of the offspring distribution, where m = f'(1) and P(z,t) is the
p.g.f. of X(t) [f(0) =qo >0 and qo + q1 < 1]. If m < 1, then

lim Prob{X(¢) =0} = lim po(t) =1
t—o0 t—o0
and if m > 1, then there exists a q satisfying f(q) = q such that
lim Prob{X(t) =0} = lim po(t) = ¢ < 1.
t—o0 t—o0

Recall that the branching process is called subcritical if m < 1, critical if m = 1 and supercritical if m > 1.
It is the supercritical case that is of interest in our applications.

Simple Birth and Death Process: Let A > 0 be the per capita birth rate and © > 0 be the per
capita death rate of an individual, p;11;(At) = MiAt + o(At) and p;—1 ;(At) = piAt + o(At). The proba-
bility of a birth is A/(A 4+ u) and the probability of a death is /(A + p). The waiting time distribution for
a birth or a death is g(t) = (A + p)e~ AWt Thus, we define the offspring p.g.f. as in a birth and death
process as follows: \
H 2

f(z) = )\—I—u+ )\_1_“2 .
An individual either dies with probability p/(A+ p) or survives and gives birth with probability A/(A+ p).
There is an important difference in this offspring p.g.f. and the one for the discrete-time branching process.
For this p.g.f., a single offspring does not replace the parent but adds to the population size. Here the
waiting time parameter in the exponential distribution is p 4+ . Also, m = f/(1) = 2X\/(p + A) > 1 iff
A > p. In this case, the fixed point ¢ of f(q) = ¢q is u/\. The probability of ultimate extinction given
X(0) =N is (u/N)",

tli%opo(t) - (%)N



Note that the preceding result agrees with p.g.f. of X (¢) for the simple birth and death process given in
Chapter 6.

SIS Epidemic Model: For the deterministic SIS epidemic model, the differential equations are
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The value Rg = é is called the basic reproduction number. This system has two equilibria, (S, I) = (N, 0)

Y
and (N/Ro, N(1 — 1/Rp) if Ro > 1. If Ro > 1, then there is an outbreak and solutions approach the
endemic equilibrium and if Rg < 1, there is no outbreak. For the CTMC SIS epidemic model, let

Prob{AI(t) = jlI(t)=1}

( %i(l\f—i) At +o(At), =1
vi At + o(At), j=-1
- 1-— []ii(N —1) +71} At
+o(At), j=0
O(At)a .7 7é _1a0a 17

where ¢ € {0,1,...,N}. The SIS epidemic model is a birth and death process with

Ai = %Z(N —i) and p; = i,
for i =0,1,...,N. There is a single absorbing state at zero, lim;_,o, po(t) = 1. The infectious class always

approaches zero (this is true for the deterministic model as well). However, at the initiation of an outbreak,
I(t) behaves like a simple birth and death process. Consider only the state I when S ~ N, then for the

deterministic model,
dl

o =PI =A== (1)
As noted, the corresponding CTMC model for I behaves like a simple birth and death process, where
B8 = X and v = p, provided N is large. Thus, using branching process theory for the simple birth and
death process we can approzrimate the dynamics at the beginning of a potential outbreak. What is the
probability that I hits zero (no outbreak)? The probability of absorption from branching process theory
tells us that the probability of absorption as t — oo (no outbreak) given I(0) = 1is pu/A =~/ =1/Ry if
Ro > 1. If I(0) = k, then the probability of no outbreak is (1/Ro)*. The process either hits zero rapidly
or grows. Even though this is an asymptotic approximation, it is a good prediction for probability of an

outbreak:

Prob{Outbreak|I(0) = k} ~ 1 — (1/Ro)*

Although this estimate is for the SIS epidemic model, it also applies to the SIR or SIRS epidemic models,
provided the equation for infectives I, equation (1), leads to a simple birth and death approximation with
I(0) small and S(0) ~ N large.



