
Chapter 6: Continuous-Time Birth and Death Processes:
The generator matrix Q for a general birth and death process is either

Q =


−λ0 µ1 0 0 · · ·
λ0 −λ1 − µ1 µ2 0 · · ·
0 λ1 −λ2 − µ2 µ3 · · ·
0 0 λ2 −λ3 − µ3 · · ·
...

...
...

...

 ,

or for a finite state space,

Q =



−λ0 µ1 0 · · · 0
λ0 −λ1 − µ1 µ2 · · · 0
0 λ1 −λ2 − µ2 · · · 0
...

...
... · · ·

...
0 0 0 · · · µN
0 0 0 · · · −µN


.

The simple birth, simple death, simple birth and death, and simple birth, death, and immigration processes
are linear in the rates, λi = λi+ ν and µi = µi.

Applying the forward Kolmogorov differential equations,
dp

dt
= Qp, first-order partial differential equa-

tions for the p.g.f. and m.g.f. can be derived. Applying the method of characteristics to the first-order
partial differential equations, explicit expressions can be found for the p.g.f. and m.g.f. of these processes.
Denote the p.g.f. for these simple process as follows (note change in notation z and θ because t is time):

P(z, t) =
∞∑
i=0

pi(t)zi

M(θ, t) =
∞∑
i=0

pi(t)eiθ = P(eθ, t)

Simple Birth, Death, and Immigration Process: Let X(0) = N . The infinitesimal transition
probabilities are

pi+j,i(∆t) = Prob{∆X(t) = j|X(t) = i}

=


µi∆t+ o(∆t), j = −1
(ν + λi)∆t+ o(∆t), j = 1
1− [ν + (λ+ µ)i] ∆t+ o(∆t), j = 0
o(∆t), j 6= −1, 0, 1.

The forward Kolmogorov differential equations are

dpi
dt

= [λ(i− 1) + ν]pi−1 + µ(i+ 1)pi+1 − (λi+ µi+ ν)pi

dp0

dt
= −νp0 + µp1

for i = 1, 2, . . . with initial condition X(0) = N . Applying the generating function technique, it follows
that the m.g.f. M(θ, t) is a solution of the following first-order partial differential equation

∂M

∂t
=
[
λ(eθ − 1) + µ(e−θ − 1)

] ∂M
∂θ

+ ν(eθ − 1)M
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with initial condition M(θ, 0) = eNθ. The preceding differential equation is first-order because the rates
are linear. The m.g.f. is the solution of this first-order partial differential equation,

M(θ, t) =
(λ− µ)ν/λ

[
µ(e(λ−µ)t − 1)− eθ(µe(λ−µ)t − λ)

]N[
(λe(λ−µ)t − µ)− λ(e(λ−µ)t − 1)eθ

]N+ν/λ
.

The moments E(Xn(t)) of the probability distribution X(t) can be found by differentiating the m.g.f.
with respect to θ and evaluating at θ = 0:

E(Xn(t)) =
∂nM(θ, t)

∂θn

∣∣∣∣
θ=0

.

Table 1: Mean, variance, and p.g.f. for the simple birth, simple death, and simple birth and death processes,
where X(0) = N and ρ = e(λ−µ)t, λ 6= µ

Simple Simple Simple
Birth Death Birth and Death

m(t) Neλt Ne−µt Ne(λ−µ)t

σ2(t) Ne2λt(1− e−λt) Ne−µt(1− e−µt) N
λ+ µ

λ− µ
ρ(ρ− 1)

(pz)N

(1− z(1− p))N
(1− p+ pz)N

P(z, t) Negative
binomial

Binomial
b(N,p)

(
ρ−1(λz − µ)− µ(z − 1)
ρ−1(λz − µ)− λ(z − 1)

)N
p = e−λt p = e−µt

Table 2: Mean, variance, and p.g.f. for the simple birth and death with immigration process, where
X(0) = N and ρ = e(λ−µ)t, λ 6= µ

Simple Birth and
Death with Immigration

m(t)
ρ[N(λ− µ) + ν]− ν

λ− µ

σ2(t) N
(λ2 − µ2)ρ[ρ− 1]

(λ− µ)2
+ ν

µ+ ρ(λρ− µ− λ)
(λ− µ)2

P(z, t)
(λ− µ)ν/λ [µ(ρ− 1)− z(µρ− λ)]N

[λρ− µ− λ(ρ− 1)z]N+ν/λ

For each of the preceding simple birth and death processes, the probability of extinction p0(t) can
be found by evaluating the p.g.f. at z = 0, P(0, t), and the probability of ultimate extinction by taking
the limit: limt→∞ p0(t). Except for the stochastic process with immigration, the other birth and death

2



processes either hit zero or approach infinity. For example, given X(0) = N , for the simple birth process,
p0(t) = 0, simple death process p0(t) = (1− e−µt)N and for the simple birth and death process:

lim
t→∞

p0(t) =

{ (µ
λ

)N
, λ > µ

1, λ ≤ µ

Logistic Growth Model:
dn

dt
= rn

(
1− n

K

)
What is the birth rate and what is the death rate? There

are an infinite number of choices for stochastic birth and death rates that yield the same deterministic
logistic growth model.

The birth and death rates should have the form

λi = b1i+ b2i
2 > 0 and µi = d1i+ d2i

2 > 0

so that λn − µn = rn(1− n/K).

dn

dt
= (b1 − d1)n+ (b2 − d2)n2 = rn− r

K
n2,

leads to
b1 − d1 = r > 0 and

b1 − d1

d2 − b2
= K > 0.

Define the birth and death rates, λi and µi, as follows:

(a) λi = i and µi =
i2

10
, i = 0, 1, 2, . . .

(b) λi =

 i− i2

20
, i = 0, 1, . . . , 20

0, i > 20
and µi =

i2

20
, i = 0, 1, 2, . . .

In both cases the deterministic model is

dn

dt
= n

(
1− n

10

)
,

where r = 1 and K = 10. In the deterministic model, solutions approach the carrying capacity K = 10.
Three sample paths for models (a) and (b) are graphed in Figure 1.
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Figure 1: Three sample paths of the stochastic logistic model for cases (a) and (b) with X(0) = 10.

For these stochastic logistic models,
lim
t→∞

p0(t) = 1.
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For a population of finite size N , we will show that the mean time to extinction is a solution of the following
matrix equation,

τQ̃ = −1

where Q̃ is the truncated generator matrix without state zero, τ = (τ1, . . . , τN ), τk is the mean time until
extinction from state k, τ = −1Q̃−1. Let

λi =

 i− i2

N
, i = 0, 1, . . . , N

0, i > N
and µi =

i2

N
, i = 0, 1, 2, . . . , N.

The intrinsic growth rate r = 1 and the carrying capacity K = N/2. The expected time to extinction can
be calculated for X(0) = m, m = 1, 2, . . . , N by solving τQ̃ = −1. When N = 10, the carrying capacity
is K = 5, and when N = 20, the carrying capacity is K = 10. The time units depend on the particular
problem. If the time is measured in days, then for the first example, extinction occurs, on the average, in
less than one year but for the second example, the mean time to extinction is over 300 years. Hence, for
even larger values of K, the mean time to extinction will take much longer; the convergence of p0(t) to 1
is slow.
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Figure 2: Expected time until extinction in the stochastic logistic model with K = 5 and K = 10.
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