
Chapters 2 and 3: Discrete-Time Markov Chains (DTMCs)

Transition probabilities:
pji(n) = Prob{Xn+1 = j|Xn = i}

If pji(n) does not depend on n, then the process is said to be time homogeneous. The transition matrix of
a DTMC {Xn}∞n=0 with state space {1, 2, . . .} and one-step transition probabilities, {pij}∞i,j=1, is denoted
as P = (pij), where

P =


p11 p12 p13 · · ·
p21 p22 p23 · · ·
p31 p32 p33 · · ·
...

...
...

 .

The column sums equal one, a stochastic matrix,
∑∞

j=1 pji = 1. The n-step transition matrix Pn = (p(n)
ij ).

The probabilities pi(n) = Prob{Xn = i}, pi(n+ 1) =
∑∞

j=1 pijpj(n), i = 1, 2 . . ..

p(n+ 1) = Pp(n)

Random walk model with absorbing barriers. See the directed graph in Figure 1 and the corre-
sponding (N + 1)× (N + 1) transition matrix:

P =



1 q 0 · · · 0 0 0
0 0 q · · · 0 0 0
0 p 0 · · · 0 0 0
0 0 p · · · 0 0 0
...

...
... · · ·

...
...

...
0 0 0 · · · 0 q 0
0 0 0 · · · p 0 0
0 0 0 · · · 0 p 1


.

The Markov chain, graphed in Figure 1, has three communication classes: {0}, {1, 2, . . . , N − 1}, and
{N}. The Markov chain is reducible. States 0 and N are absorbing; the remaining states are transient.

 0  1   2 N

Figure 1: Probability of moving to right is p and to the left is q, p + q = 1. Boundaries 0 and N are
absorbing, p00 = 1 = pNN (random walk with absorbing barriers or gambler’s ruin problem).

A DTMC is irreducible if its digraph is strongly connected. Otherwise it is called reducible. An
irreducible DTMC can be positive recurrent or null recurrent or transient. It may also be classified as
periodic or aperiodic. Recurrence is defined for each state i in the chain. Recurrence means for each state i
if the process leaves state i it will return to state i at some future time. If not, the state is transient. A state
i is positive recurrent if the mean recurrence time (µii mean return time) is finite. A state i with an infinite
mean recurrence time is called null recurrent. Periodicity and recurrence are class properties. That means,
the entire communicating class will have the same period (or be aperiodic) and same recurrence (either
positive recurrent or null recurrent). An example of a null recurrent process is the symmetric random walk
on the set of integers.

An ergodic Markov chain is a Markov chain that is irreducible, aperiodic and positive recurrent. An
irreducible finite Markov chain is always positive recurrent. Thus, an irreducible, aperiodic finite Markov
chain is ergodic. The following theorem shows the importance of ergodic chains. The following theorems
apply to null recurrent and positive recurrent chains.

1



Theorem 1 (Basic Limit Theorem for aperiodic Markov chains) Let {Xn}∞n=0 be a recurrent, ir-
reducible, and aperiodic DTMC with transition matrix P = (pij). Then

lim
n→∞

p
(n)
ij =

1
µii
,

where µii is the mean recurrence time for state i and i and j are any states of the chain. [If µii =∞, then
limn→∞ p

(n)
ij = 0.]

The first theorem states that there exists a limit of Pn and, in particular, the columns of the limiting
matrix Pn are all the same. In fact, the limiting column is the limiting stationary distribution p(n)→ π,
provided the DTMC is ergodic. That is,

lim
n→∞

p(n) = lim
n→∞

Pnp(0) = P∞p(0) = π,

where all of the columns of P∞ are π = (π1, π2, . . .)tr, where πi > 0 (hence the term positive recurrent).
For an ergodic finite Markov chain, the limiting stationary distribution can be found by computing the

eigenvector corresponding to the eigenvalue 1 of P : Pπ = π, where
∑
πi = 1. Also, µii =

1
πi
.

The preceding theorem is extended to periodic chains.

Theorem 2 (Basic Limit Theorem for periodic Markov chains) Let {Xn}∞n=0 be a recurrent, irre-
ducible, and d-periodic DTMC, d > 1, with transition matrix P = (pij). Then

lim
n→∞

p
(nd)
ii =

d

µii

and p
(m)
ii = 0 if m is not a multiple of d, where µii is the mean recurrence time for state i. [If µii = ∞,

then limn→∞ p
(nd)
ii = 0.]

The random walk on {0,±1,±2, . . .} with probability moving to right equal to p and to the left equal
to q, with p+ q = 1, p > 0, q > 0, is an irreducible, 2-periodic DTMC. If p = q = 1/2, then the DTMC is
null recurrent and if p 6= q, then the DTMC is transient.

Random Walk with Absorbing Boundaries or Gambler’s Ruin Let’s return to the random walk
model with absorbing boundaries. This DTMC does not satisfy either of the Basic Limit Theorems because
it is a reducible Markov chain with three communicating classes, two absorbing states {0} and {N} and
the transient class {1, 2, . . . , N − 1}. Interesting questions about problems with absorbing states such as
an extinction state in population dynamics are: (1) What is the probability of absorption? and (2): What
is the expected time until absorption? We investigate this question with the random walk model and
with the genetics of inbreeding for a finite DTMC. Later, we investigate the probability of extinction in a
population model via a branching process.

Consider the random walk model with absorbing boundaries at 0 and N . In the gambler’s ruin problem,
state 0 is ruin and state N is winning the maximum amount of money. In either case, after hitting 0 or
N, you stop playing the game. Let ak be the probability of ruin (absorption at k = 0) beginning with a
capital of k:

ak = pak+1 + qak−1 (1)

for 1 ≤ k ≤ N − 1. Equation (1) is a second-order difference equation in ak. The difference equation can
be written as

pak+1 − ak + qak−1 = 0, k = 1, . . . , N − 1. (2)
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This method of deriving equation (1) is referred to as a first-step analysis (Taylor and Karlin, 1998). This
difference equation (2) can be solved with the following boundary conditions

a0 = 1 and aN = 0

by assuming ak = λk with characteristic equation: pλ2 − λ + q = 0. Alternately, it can be shown that
there exists a submatrix T of P for the set of transient states, where matrix T is not a stochastic matrix.
In fact, matrix T has the property that the spectral radius is ρ(T ) < 1 and therefore (I − T ) is invertible.
The probability of absorption ak starting from state k can be obtained as follows:

(a1, . . . , aN−1) = (p01, p02, . . . , p0,N−1)(I − T )−1.

For a more general Markov chain with two absorbing states at 0 and N for which there may be a
probability of a transition from state k to state i, pik (jump from state k to i with probability pik), the
difference equation from the first-step analysis for probability of absorption has the form:

ak =
N∑

k=0

pikai.

To find the probability of absorption into state N , the boundary conditions are a0 = 0 and aN = 1.

Expected Time until Absorption: Let τk be the mean time until absorption into either states 0
or N in the gambler’s ruin problem. The difference equation for τk has the following form:

τk = p(1 + τk+1) + q(1 + τk−1),

for k = 1, 2, . . . , N − 1 or
pτk+1 − τk + qτk−1 = −1, (3)

The boundary conditions are τ0 = 0 = τN . An explicit solution to this difference equation with the bound-
ary conditions can be solved by finding the general solution of the homogeneous difference equation and
adding the particular solution of the nonhomogeneous equation, τk =homogeneous solution +particular
solution. Alternately, it can be shown that the matrix T can be used to compute the mean time until
absorption from state k, τk. In particular, It can be shown that

(τ1, τ2, . . . , τN−1) = 1(I − T )−1, 1 = (1, 1, . . . , 1).

In a more general Markov chain with two absorbing states, the difference equation for the absorprion
ttakes the form:

τk =
N∑

i=0

pik(1 + τi) or τk −
N∑

i=0

pikτi = 1.

Table 1: Gambler’s ruin problem with a beginning capital of k = 50 and a total capital of N = 100

Prob. a50 b50 τ50 A′50(1) B′50(1)
q = 0.50 0.5 0.5 2500 1250 1250
q = 0.51 0.880825 0.119175 1904 1677 227
q = 0.55 0.999956 0.000044 500 499.93 0.07
q = 0.60 1.00000 0.00000 250 250 0
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Figure 2: Three sample paths for the gambler’s ruin problem when N = 100, k = 50, and q = 0.55

Example of Genetics of Inbreeding: Two alleles A and a. There are six possible breeding pairs which
denote the six states of the DTMC, 1: AA × AA, 2. aa × aa, 3. Aa × Aa, 4. Aa × aa, 5. AA × aa, 6.
AA × Aa. Inbreeding of the first two types results in offspring of the same genotypes and inbreeding in
the next generation will be of the same type; they are absorbing states. The remaining states, 3,4,5,6 are
transient. The transition matrix has the following form:

P =



1 0 1/16 0 0 1/4
0 1 1/16 1/4 0 0
0 0 1/4 1/4 1 1/4
0 0 1/4 1/2 0 0
0 0 1/8 0 0 0
0 0 1/4 0 0 1/2

 =
(
I A
O T

)

Probability of absorption into states 1 or 2 from states 3, 4, 5, 6 is computed from the fundamental matrix,
(I − T )−1,

lim
n→∞

Pn =
(
I (A+AT +AT 2 + · · · )
O O

)
=
(
I A(I − T )−1

O O

)
.

Thus, A(I − T )−1 is the probability of absorption into states 1 or 2 (fixation) from states 3, 4, 5 or 6. Let
1 = (1, 1, 1, 1), then 1(I − T )−1 is the mean time until absorption from states 3, 4, 5, or 6.
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