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1. Introduction

L. Hoang (Texas Tech) Asymptotic Expansions for Dissipative Differential Equations 1.7.2021 JMM 3



The Navier–Stokes equations

The Eulerian description turns out to be simpler for deriving the set of
equations that govern the fluid flows. They are called the Navier–Stokes
equations (NSE), {

ut − ν∆u + (u · ∇)u = −∇p + f ,

div u = 0.

where ν > 0 is the kinematic viscosity, and the unknowns are the velocity
u(x , t) and pressure p(x , t).
Initial condition u(x , 0) = u0(x), where u0 is a given initial vector field.
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Foias–Saut asymptotic expansions

Functional form of NSE (after scaling to have ν = 1):

ut + Au + B(u, u) = f , u(0) = u0.

• If f = const. 6= 0, turbulence.
• If f = 0 or f = f (t)→ 0 as t →∞, turbulence for short time, then the
flows settle (to zero) eventually.
• Consider f = 0. Foias–Saut (1987) proved that any Leray–Hopf weak
solution u(t) has an asymptotic expansion,

u(t) ∼
∞∑
n=1

qn(t)e−µnt ,

where qj(t)’s are polynomials in t with values in functional spaces.
• In fact, there is a smallest n0 such that qn0 6= 0 is independent of t, is an
eigenfunction of the Stokes operator A.
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Asymptotic expansions

Let (X , ‖ · ‖) be a normed space and (αn)∞n=1 be a sequence of strictly
increasing non-negative numbers. A function f : [T ,∞)→ X , for some
T ∈ R, is said to have an asymptotic expansion

f (t) ∼
∞∑
n=1

fn(t)e−αnt in X ,

where fn(t) is an X -valued polynomial, if one has, for any N ≥ 1, that

∥∥∥f (t)−
N∑

n=1

fn(t)e−αnt
∥∥∥ = O(e−(αN+εN)t) as t →∞,

for some εN > 0.
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Exponential decaying rates

• Denote the spectrum of the Stokes operator A by {Λk : k ∈ N}, where
Λk ’s are positive, strictly increasing to infinity.
• Let S be the additive semigroup generated by Λk ’s, that is,

S =
{ N∑

j=1

Λkj : N, k1, . . . , kN ∈ N
}
.

• We arrange the set S as a sequence (µn)∞n=1 of positive, strictly
increasing numbers. Clearly,

lim
n→∞

µn =∞,

µn + µk ∈ S ∀n, k ∈ N.
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Other NSE and PDE results

H.–Martinez (2017, 2018) prove that the Foias–Saut expansion holds
in Gevrey spaces with non-potential force

ut + Au + B(u, u) = f (t) ∼
∞∑
n=1

fn(t)e−γnt .

Cao–H. (2020)

ut + Au + B(u, u) = f (t) ∼
∞∑
n=1

χnt
−γn .

H.–Titi (2020): Rotating fluids

ut − ν∆u + (u · ∇)u + Re3 × u = −∇p.

Dissipative wave equations: Shi (2000)

Navier–Stokes–Boussinesq system: Biswas–H.–Martinez (in
preparation)
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ODE results

A. With analytic nonlinear terms, no forcing.

y ′ + Ay = F (y).

Normal forms: Poincaré, Dulac, Lyapunov (first method), Bruno.

Power geometry: Bruno (1960s–present).

Foias–Saut approach: Minea (1998).

B. Lagrangian trajectories. H. (2020):

y ′ = u(y , t).

C. With forcing.
y ′ + Ay = F (y) + f (t).

Cao–H. (2020).

f (t) =
∑

t−µ, (ln t)r , (ln ln t)r (ln ln ln t)r , . . . .
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2. Main result
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Consider ODE in Rd :

dy

dt
+ Ay = F (y), t > 0,

where A is a d × d constant (real) matrix, and F is a vector field on Rd .

Assumption

Matrix A is a diagonalizable with positive eigenvalues.

• The spectrum σ(A) of matrix A consists of eigenvalues Λk ’s, for
1 ≤ k ≤ d , which are positive and increasing in k .
• Then there exists an invertible matrix S such that

A = S−1A0S , where A0 = diag[Λ1,Λ2, . . . ,Λd ].

• Denote the distinct eigenvalues of A by λj ’s that are strictly increasing
in j , i.e.,

0 < λ1 = Λ1 < λ2 < . . . < λd∗ = Λd with 1 ≤ d∗ ≤ d .
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Positively homogeneous functions

Definition

Suppose (X , ‖ · ‖X ) and (Y , ‖ · ‖Y ) be two (real) normed spaces.
A function F : X → Y is positively homogeneous of degree β ≥ 0 if

F (tx) = tβF (x) for any x ∈ X and any t > 0.

Define Hβ(X ,Y ) to be the set of positively homogeneous functions of
order β from X to Y , and denote Hβ(X ) = Hβ(X ,X ).
For a function F ∈ Hβ(X ,Y ), define

‖F‖Hβ
= sup
‖x‖X =1

‖F (x)‖Y = sup
x 6=0

‖F (x)‖Y
‖x‖βX

.
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The following are immediate properties.

1 If F ∈ Hβ(X ,Y ) with β > 0, then taking x = 0 and t = 2 gives

F (0) = 0.

If, in addition, F is bounded on the unit sphere in X , then

‖F‖Hβ
∈ [0,∞) and ‖F (x)‖Y ≤ ‖F‖Hβ

‖x‖βX ∀x ∈ X .

2 The zero function (from X to Y ) belongs to Hβ(X ,Y ) for all β ≥ 0,
and a constant function (from X to Y ) belongs to H0(X ,Y ).

3 Each Hβ(X ,Y ), for β ≥ 0, is a linear space.

4 If F1 ∈ Hβ1(X ,R) and F2 ∈ Hβ2(X ,Y ), then F1F2 ∈ Hβ1+β2(X ,Y ).

5 If F : X → Y is a homogeneous polynomial of degree m ∈ Z+, then
F ∈ Hm(X ,Y ).
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Assumption

The mapping F : Rd → Rd has the the following properties.

1 F is locally Lipschitz on Rd and F (0) = 0.

2 Either (a) or (b) below is satisfied.
(a) There exist numbers βk ’s, for k ∈ N, which belong to (1,∞) and
increase strictly to infinity, and functions Fk ∈ Hβk (Rd) ∩ C∞(Rd

0 ),
for k ∈ N, such that it holds, for any N ∈ N, that∣∣∣∣∣F (x)−

N∑
k=1

Fk(x)

∣∣∣∣∣ = O(|x |β) as x → 0, for some β > βN .

(b) There exist N∗ ∈ N, strictly increasing numbers βk ’s in (1,∞),
and functions Fk ∈ Hβk (Rd) ∩ C∞(Rd

0 ), for k = 1, 2, . . . ,N∗, such
that ∣∣∣∣∣F (x)−

N∗∑
k=1

Fk(x)

∣∣∣∣∣ = O(|x |β) as x → 0, for all β > βN∗ .

F (x) ∼
∞∑
k=1

Fk(x),

and case ?? as

F (x) ∼
N∗∑
k=1

Fk(x).
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Main Theorem

Theorem (Cao-H.-Kieu 2020)

Let y(t) be a non-trivial, decaying solution. Then there exist polynomials
qn: R→ Rd such that y(t) has an asymptotic expansion

y(t) ∼
∞∑
n=1

qn(t)e−µnt in Rd ,

where µn’s are increasing strictly to infinity, and qn(t) satisfies, for any
n ≥ 1,

q′n+(A−µnId)qn = Jn
def
==

∑
r≥1,m≥0,k1,k2,...,km≥2,∑m

j=1 µ̃kj +αrλ∗=µ̃n

Fr ,m(qk1 , qk2 , . . . , qkm) in R,

where Fr ,m are m-linear mappings from (Rd)m to Rd .
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3. Sketch of Proof
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Proof (I). First asymptotic approximation

Proposition (Cao-H.-Kieu 2020)

Let y(t) be a non-trivial, decaying solution. Then there exists a number
C1 > 0 such that

|y(t)| ≤ C1e
−Λ1t for all t ≥ 0.

Moreover, for any ε > 0, there exists a number C2 = C2(ε) > 0 such that

|y(t)| ≥ C2e
−(Λd+ε)t for all t ≥ 0.

Theorem (Cao-H.-Kieu 2020)

Let y(t) be a non-trivial, decaying solution. Then there exist an eigenvalue
λ∗ of A and a corresponding eigenvector ξ∗ such that

|y(t)− e−λ∗tξ∗| = O(e−(λ∗+δ)t) for some δ > 0.

Foias-Saut use Dirichlet quotient |A1/2u|2/|u|2. We have a new proof.
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Proof (II). Infinite series expansion

Consider

F (x) ∼
∞∑
k=1

Fk(x), Fk ∈ Hβk (Rd) ∩ C∞(Rd
0 ),

Definition

We define a set S̃ ⊂ [0,∞) as follows. Let αk = βk − 1 > 0 for k ∈ N, and

S̃ =
{ d∗∑

k=n0

mk(λk − λ∗) +
∞∑
j=1

zjαjλ∗ : mk , zj ∈ Z+,

with zj > 0 for only finitely many j ’s
}
.

The set S̃ has countably, infinitely many elements. Arrange S̃ as a
sequence (µ̃n)∞n=1 of non-negative and strictly increasing numbers. Set

µn = µ̃n + λ∗ for n ∈ N, and define S = {µn : n ∈ N}.
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Let r ∈ N and s ∈ Z+. Since Fr is a C∞-function in a neighborhood of
ξ∗ 6= 0, we have the following Taylor’s expansion, for any h ∈ Rd ,

Fr (ξ∗ + h) =
s∑

m=0

1

m!
DmFr (ξ∗)h

(m) + gr ,s(h),

where DmFr (ξ∗) is the m-th order derivative of Fr at ξ∗, and

gr ,s(h) = O(|h|s+1) as h→ 0.

For m ≥ 0, denote

Fr ,m =
1

m!
DmFr (ξ∗).

When m = 0, Fr ,0 = Fr (ξ∗). When m ≥ 1, Fr ,m is an m-linear mapping
from (Rd)m to Rd .
One has, for any r ,m ≥ 1, and y1, y2, . . . , ym ∈ Rd , that

|Fr ,m(y1, y2, . . . , ym)| ≤ ‖Fr ,m‖ · |y1| · |y2| · · · |ym|.
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Proof of Main Theorem

First Step (N = 1). By the first asymptotic approximation.
Induction Step. Let yn(t) = qn(t)e−µnt , un(t) = y(t)−

∑n
k=1 yk(t). By

induction hypotheses,

uN(t) = O(e−(µN+δN)t).

Let wN(t) = eµN+1tuN(t). Then

w ′N + (A− µN+1Id)wN = eµN+1tF (y)− eµN+1t
N∑

k=1

(Ayk + y ′k).

F (x) =
r∗∑
r=1

Fr (x) +O(|x |βr∗+εr∗ ) as x → 0.

eµN+1tF (y(t)) = E (t) + eµN+1tO(e−λ∗(βr∗+εr∗ )t),

where

E (t) = eµN+1t
r∗∑
r=1

Fr (y(t)).
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Denote

ỹk(t) = yk(t)eλ∗t = qk(t)e−µ̃k t and ũk(t) = uk(t)eλ∗t .

Then

ũN(t) = uN(t)eλ∗t = O(e−(µ̃N+δN)t), ũ1(t) = u1(t)eλ∗t = O(e−δ1t).

Write

Fr (y(t)) = Fr (y1 + u1) = Fr
(
e−λ∗t(ξ∗ + ũ1)

)
= e−βrλ∗tFr (ξ∗ + ũ1).

By Taylor expansion about ξ∗:

Fr (y(t)) = e−βrλ∗t

(
Fr (ξ∗) +

s∗∑
m=1

Fr ,mũ
(m)
1

)
+ e−βrλ∗tgr ,s∗(ũ1).
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Fr ,mũ
(m)
1 = Fr ,m

( N∑
k=2

ỹk + ũN

)(m)

= Fr ,m

( N∑
k=2

ỹk + ũN ,
N∑

k=2

ỹk + ũN , . . . ,
N∑

k=2

ỹk + ũN

)
= Fr ,m

( N∑
k=2

ỹk

)(m)
+

∑
finitely many

Fr ,m(z1, . . . , zN).

s∗∑
m=0

Fr ,mũ
(m)
1 = Fr (ξ∗) +

s∗∑
m=1

Fr ,m

( N∑
k=2

ỹk

)(m)
+O(e−(µ̃N+δN)t)

=
s∗∑

m=0

N∑
k1,...,km≥2

Fr ,m(ỹk1 , ỹk2 , . . . , ỹkm) +O(e−(µ̃N+δN)t)

=
s∗∑

m=0

N∑
k1,...,km≥2

e
−t

∑m
j=1 µ̃kjFr ,m(qk1 , qk2 , . . . , qkm) +O(e−(µ̃N+δN)t).

L. Hoang (Texas Tech) Asymptotic Expansions for Dissipative Differential Equations 1.7.2021 JMM 22



Thus,

e−βrλ∗t
s∗∑

m=0

Fr ,mũ
(m)
1 =

s∗∑
m=0

N∑
k1,...,km=2

e
−t(

∑m
j=1 µ̃kj +βrλ∗)Fr ,m(qk1 , qk2 , . . . , qkm)

+O(e−(µ̃N+βrλ∗+δN)t).

Exponent: µ = µ̃k1 + . . .+ µ̃km + αrλ∗ ∈ S̃ , hence is some µ̃p. Then

m∑
j=1

µ̃kj + βrλ∗ = µ+ λ∗ = µ̃p + λ∗ = µp ∈ S for some integer p.

More manipulations:

w ′N + (A− µN+1Id)wN = −eµN+1t
N∑

k=1

e−µk tχk + JN+1 +O(e−δ
′
N t),

where

χ1 = q′1 + (A− µ1Id)q1, χk = q′k + (A− µk Id)qk − Jk for 2 ≤ k ≤ N.
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By the induction hypothesis, χk = 0 for 2 ≤ k ≤ N. Hence,

w ′N + (A− µN+1Id)wN = JN+1 +O(e−δ
′
N t),

where JN+1(t) is a polynomial in t.

Lemma (Approximation Lemma)

Let p(t) be an Rd -valued polynomial and g : [T ,∞)→ Rd ,
|g(t)| = O(e−αt) for some α > 0. Suppose λ > 0 and y ∈ C ([T ,∞),Rd)
is a solution of

y ′(t) = −(A− λId)y(t) + p(t) + g(t), for t ∈ (T ,∞).

If λ > λ1, assume further that

lim
t→∞

(e(λ̄−λ)t |y(t)|) = 0, where λ̄ = max{λj : 1 ≤ j ≤ d∗, λj < λ}.

Then there exists a unique Rd -valued polynomial q(t) such that

q′(t) = −(A− λId)q(t) + p(t) for t ∈ R, |y(t)− q(t)| = O(e−εt).
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By the Approximation Lemma, there exists polynomial qN+1 : R→ Rd

and a number δN+1 > 0 such that

|wN(t)− qN+1(t)| = O(e−δN+1t).

Moreover qN+1(t) solves

q′N+1 + (A− µN+1Id)qN+1 = JN+1,

that is, equation (4) holds for n = N + 1.
Multiplying estimate of wN − qN+1 by e−µN+1t gives

∣∣∣y(t)−
N+1∑
n=1

qn(t)e−µnt
∣∣∣ = O(e−(µN+1+δN+1)t),

which proves the statement for N := N + 1.
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4. Extended results and examples
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Extended results and examples

For n ∈ N, p ∈ [1,∞) and x = (x1, x2, . . . , xn) ∈ Rn, the `p-norm of x is

‖x‖p =
( n∑

j=1

|xj |p
)1/p

.

Example

Let α be any number in (0,∞) that is not an even integer, and

F (x) = |x |αx for x ∈ Rd .

Example

Given a constant d × d matrix M0, even numbers p1, p2 ≥ 2, and real
numbers α, β > 0, let

F (x) =
‖x‖αp1

M0x

1 + ‖x‖βp2

for x ∈ Rd .
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For x ∈ Rd with ‖x‖p2 < 1, we expand 1/(1 + ‖x‖βp2), using the geometric
series, and can verify that

F (x) ∼
∞∑
k=1

(−1)k−1‖x‖αp1
‖x‖(k−1)β

p2 M0x .

When ‖ · ‖p1 = ‖ · ‖p2 = | · |, function F has form

F (x) ∼
∞∑
k=1

ck |x |α+(k−1)βM0x .

Others:

F (x) ∼
∞∑
k=1

‖x‖αk
pk
Mkx ,

∣∣∣F (x)−
N∗∑
k=1

‖x‖αk
pk
Mkx

∣∣∣ = O(|x |αN∗+1+ε̄) as x → 0.

The last example, in general, only yields finite expansion for y(t).
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Example

Consider d = 2 and let

F (x1, x2) = (|x3
1−x3

2 |p1+|x3
1 +x3

2 |p1)α/p1 ·(|x1x2|p2+|3x2
1−2x2

2 |p2)β/p2M0(x1, x2),

where p1, p2 ≥ 2 are even numbers, M0 is a R2-valued homogeneous
polynomials of degree m0 ∈ Z+, and α, β > 0.

Example

Consider the following system of ODEs in R2:

y ′1 + 2y1 + y2 = |y |2/3|y1|1/2y3
2 ,

y ′2 + y1 + 2y2 = ‖y‖1/3
5/2y1|y2|1/4sign(y2).

The corresponding matrix A has eigenvalues and bases of the
corresponding eigenspaces as follows: λ1 = 1, basis {(−1, 1)}, and λ2 = 3,
basis {(1, 1)}. Then any eigenvector of A belongs to V = (R∗)2. The
corresponding function F belongs to C∞(V ).
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THANK YOU!
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