Asymptotic expansions for decaying solutions of ODEs. Part II

Joint work with Dat Cao (Texas Tech University)

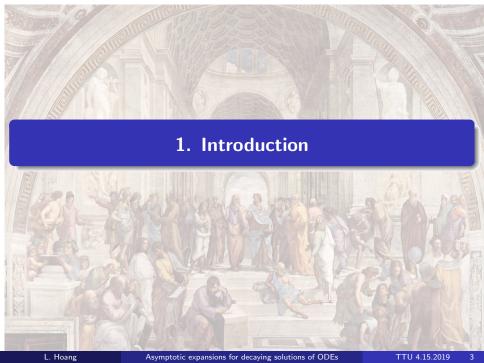
Luan Hoang

http://www.math.ttu.edu/~lhoang/

April 15, 2019
Analysis Seminar
Department of Mathematics and Statistics
Texas Tech University

Outline

- Introduction
- 2 Main results
 - I. Exponentially decaying forces
 - II. Power-decaying forces
- Sketch of proofs
 - I. Case of exponential decay
 - II. Case of power decay
- Application to solutions near special periodic orbits
- More general expansions



Foias-Saut result for Navier-Stokes equations

Functional form of NSE

$$\frac{du}{dt} + Au + B(u, u) = f(t),$$

where A is the (unbounded) Stokes operator with, after scaling, $\sigma(A) \subset \mathbb{N}$.

Note: quadratic nonlinearity.

When f = 0, solution u(t) admits an expansion

$$u(t) \sim \sum_{n=1}^{\infty} q_n(t)e^{-nt}$$
, with polynomials $q_n(t)$,

meaning

$$\|u(t) - \sum_{n=1}^N q_n(t)e^{-nt}\| = \mathcal{O}(e^{-(N+arepsilon)t}) \quad \textit{ast} o \infty.$$

Extension to time-dependent forces

NSE with periodic boundary conditions.

• H.-Martinez (2017):

$$f(t) \sim \sum_{n=1}^{\infty} f_n(t)e^{-nt}.$$

Same expansion for u(t):

$$u(t) \sim \sum_{n=1}^{\infty} q_n(t)e^{-nt}.$$

Note: exponential rates are in the additive semigroup generated by $\sigma(A)$.

• Cao-H. (2017)

$$f(t) \sim \sum_{n=1}^{\infty} \phi_n t^{-n}.$$

Then

$$u(t) \sim \sum_{n=1}^{\infty} \xi_n t^{-n}$$
.

Our problems

Focus on ordinary differential equations (ODE) in \mathbb{R}^n :

$$\frac{dy}{dt} = -Ay + G(y) + f(t), \quad y(0) = y_0,$$

where

- unknown $y(t) \in \mathbb{R}^n$, given initial condition $y_0 \in \mathbb{R}^n$,
- A is an $n \times n$ matrix,
- \bullet G(y) locally is Lipschitz, and has expansion

$$G(y) \sim \sum_{m=2}^{\infty} \mathcal{L}_m(y) \text{ as } y \to 0,$$

- ullet each $\mathcal{L}_m:\mathbb{R}^n o\mathbb{R}^n$ is a homogeneous polynomial of degree m,
- f(t) decays exponentially or algebraically at any rates.

Goal: Obtain asymptotic expansions for solutions y(t) as $t \to \infty$.

Assumption 1

• Matrix A has positive eigenvalues

$$\Lambda_1 \leq \Lambda_2 \leq \ldots \leq \Lambda_n$$

and the corresponding eigenvectors form a basis of \mathbb{R}^n .

• Rewrite the spectrum

$$\sigma(A) = \{\Lambda_k : k = 1, 2, \dots, n\} = \{\lambda_1 < \lambda_2 < \dots\}.$$

Assumption 2

Rewrite the homogeneous polynomials as

$$\mathcal{L}_m(y) = L_m(y, y, \dots, y)$$
 (m times),

where $L_m: \mathbb{R}^{n \times m} \to \mathbb{R}^n$ is an *m*-linear mapping.

• For each $N \ge 2$,

$$|G(y) - \sum_{m=2}^{N} \mathcal{L}_m(y)| = \mathcal{O}(|y|^{N+\varepsilon}) \text{ as } y \to 0,$$

for some $\varepsilon > 0$.

Global existence

Theorem

There exists $\varepsilon_0 > 0$ such that if

$$|y_0| < \varepsilon_0, \quad ||f||_{\infty} = \sup_{t \ge 0} |f(t)| < \varepsilon_0,$$

then there exists a solution y(t) on $[0, \infty)$. In addition, if

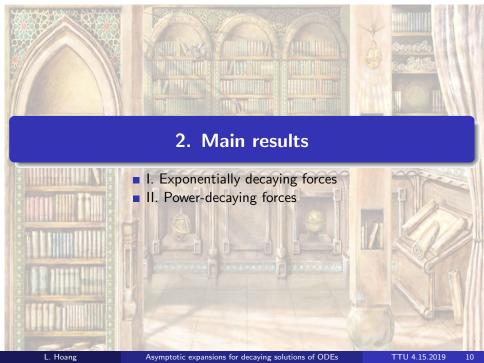
$$\lim_{t\to\infty}f(t)=0,$$

then

$$\lim_{t\to\infty}y(t)=0.$$

Note: for small y: $|G(y)| \le C|y|^2$.

Throughout, we consider global solution y(t) on $[0, \infty)$ that converges to zero as $t \to \infty$.



I. Exponentially decaying forces

Notation. Exponential expansion (in time):

$$y(t) \stackrel{\text{exp.}}{\sim} \sum_{k=1}^{\infty} p_k(t) e^{-\alpha_k t},$$

where $\alpha_k > 0$ are strictly increasing constants, and p_k are polynomials, if for any $N \ge 1$, there exists $\varepsilon > 0$, such that

$$|y(t)-\sum_{k=1}^N p_k(t) \mathrm{e}^{-lpha_k t}|=\mathcal{O}(\mathrm{e}^{-(lpha_N+arepsilon)t}) \quad ext{as } t o \infty.$$

Assumption

Force

$$f(t) \stackrel{\exp.}{\sim} \sum_{k=1}^{\infty} \tilde{p}_k(t) e^{-\alpha_k t}.$$

Let S be the additive semigroup generated by λ_k and α_k . Re-order:

$$S = \{\mu_1 < \mu_2 < \mu_3 < \ldots\}.$$

Re-write

$$f(t) \stackrel{\mathrm{exp.}}{\sim} \sum_{k=1}^{\infty} \rho_k(t) e^{-\mu_k t} = \sum_{k=1}^{\infty} f_k(t).$$

For $\mu \in S$, denote $R_{\mu} = R_{\lambda}$ the projection if $\lambda \in \sigma(A)$, otherwise, $R_{\mu} = 0$. Still have

$$AR_{\mu}y = \mu R_{\mu}y, \quad \mathbb{R}^n = \bigoplus_{k=1}^{\infty} R_{\mu_k}.$$

Theorem (Cao-H.)

For solution y(t), there exist vector-valued polynomials $q_n(t)$ such that

$$y(t) \sim \sum_{k=1}^{\infty} q_k(t) e^{-\mu_k t} \quad \text{as } t o \infty.$$

In fact, the polynomials $q_k(t)$'s solve the linear systems

$$q'_{k} = -(A - \mu_{k})q_{k} + \sum_{m=2}^{N_{k}} \sum_{\mu_{j_{m,1}} + \mu_{j_{m,2}} + \dots + \mu_{j_{m,m}} = \mu_{k}} L_{m}(q_{j_{m,1}}, q_{j_{m,2}}, \dots, q_{j_{m,m}}) + \frac{p_{k}(t)}{p_{k}(t)}$$

Equivalently, $y_k(t) = q_k(t)e^{-\mu_k t}$ solve

$$y'_{k} = -Ay_{k} + \sum_{m=2}^{N_{k}} \sum_{u_{i-1} + u_{i-1} = u_{k}} L_{m}(y_{j_{m,1}}, y_{j_{m,2}}, \dots, y_{j_{m,m}}) + f_{k}(t).$$

Remarks.

- In the sums above, $1 \le j_{m,\ell} \le k-1$, and N_k is finite depending on k, and sufficiently large, for e.g., $N_k \mu_1 \ge \mu_k$.
- Each ODE is a linear system, with the forcing term defined by previous steps.
- The q_k 's are unique polynomial solutions provided $R_{\mu_k}q_k(0)$ is given.
- In autonomous case (f = 0),

$$q'_k = -(A - \mu_k)q_k + \sum_{m=2}^{N_k} \sum_{\mu_{j_m,1} + \mu_{j_m,2} + \dots + \mu_{j_m,m} = \mu_k} L_m(q_{j_m,1}, q_{j_m,2}, \dots, q_{j_m,m}).$$

Compare this with non-autonomous case.

• The q_k 's depend on the initial data y_0 .

II. Power-decaying forces

Notation. Power expansion (in time):

$$y(t) \stackrel{\text{pow.}}{\sim} \sum_{j=1}^{\infty} \xi_j t^{-\alpha_j},$$

where $\alpha_j > 0$ are strictly increasing, and $\xi_j \in \mathbb{R}^n$ are constant vectors, if for any $N \ge 1$, there exists $\varepsilon > 0$, such that

$$|y(t) - \sum_{j=1}^N \xi_j t^{-\alpha_j}| = \mathcal{O}(t^{-(\alpha_N + \varepsilon)})$$
 as $t \to \infty$.

Assumption

The force has the expansion

$$f(t) \stackrel{\text{pow.}}{\sim} \sum_{k=1}^{\infty} \tilde{\eta}_k t^{-\alpha_k},$$

where $ilde{\eta}_k \in \mathbb{R}^n$, and

$$0<\alpha_1<\alpha_2<\ldots$$

Let $S = (additive semigroup generated <math>\alpha_k$'s)+($\mathbb{N} \cup \{0\}$). Denote

$$S = \{0 < \mu_1 = \alpha_1 < \mu_2 < \mu_3 < \ldots\}.$$

Rewrite

$$f(t) \stackrel{\text{pow.}}{\sim} \sum_{k=1}^{\infty} \eta_k t^{-\mu_k} = \sum_{k=1}^{\infty} f_k(t).$$

Theorem (Cao-H.)

For any solution y(t), one has

$$y(t) \overset{\mathrm{pow.}}{\sim} \sum_{k=1}^{\infty} \xi_k t^{-\mu_k} \quad \text{as } t \to \infty,$$

where constant vectors $\xi_k \in \mathbb{R}^n$ satisfy

$$A\xi_k = \sum_{m=2} \sum_{\mu_{j_{m,1}} + \mu_{j_{m,2}} + \dots + \mu_{j_{m,m}} = \mu_k} L_m(\xi_{j_{m,1}}, \xi_{j_{m,2}}, \dots, \xi_{j_{m,m}}) + \eta_k + \xi_p \mu_p$$

in case there exists $1 \le p \le k-1$ such that $\mu_p + 1 = \mu_k$; or

$$A\xi_k = \sum_{m=2} \sum_{\mu_{j_{m,1}} + \mu_{j_{m,2}} + \dots + \mu_{j_{m,m}} = \mu_k} L_m(\xi_{j_{m,1}}, \xi_{j_{m,2}}, \dots, \xi_{j_{m,m}}) + \eta_k,$$

in case $\mu_p + 1 \neq \mu_k$ for all $1 \leq p \leq k - 1$.

Remarks

- The ξ_k 's and hence the expansion are *independent* on initial data y_0 , contrasting with the exponential case.
- It means that all (decaying) solutions have the same power expansion.

Example

Assume:

- $\alpha_k = k$ for all $k \in \mathbb{N}$
- G(y) = B(y, y).

Then $\mu_k = k$, and $\mathcal{S} = \mathbb{N}$. Expansion

$$y(t) \stackrel{\text{pow.}}{\sim} \sum_{k=1}^{\infty} \xi_k t^{-k},$$

where

$$\xi_1 = A^{-1}\eta_1,$$

and for $k \ge 2$,

$$\xi_k = A^{-1} \Big\{ (k-1)\xi_{k-1} + \sum_{j=1}^{k-1} B(\xi_j, \xi_{k-j}) + \eta_k \Big\}.$$

Signatura and part of a cold and the second and and a cold and a c

Surma to be being the the bundless

find of the cast yours I charle town your

3. Sketch of proofs

■ I. Case of exponential decay

■ II. Case of power decay

souther a laboratory of the property of the pr

Class wells at the second of t

have a Moder or and there of the service of an post or and a very an appropriate with a work and have men a service or and and along a hate of the whole the people of a service of a hate of the whole the people of a service of

Child all and the second of the second in the second in the second of th

are when the section of the day for the

I. Case of exponential decay

Recall

$$f(t) \stackrel{\text{exp.}}{\sim} \sum_{k=1}^{\infty} p_k(t) e^{-\mu_k t} = \sum_{k=1}^{\infty} f_k(t).$$

Need to prove

$$y(t) \stackrel{\exp.}{\sim} \sum_{k=1}^{\infty} q_k(t) e^{-\mu_k t}.$$

Induction step.

Let $y_k(t) = q_k(t)e^{-\mu_k t}$, for $1 \le k \le N$, $\bar{y}_N = \sum_{k=1}^N y_k$ and $v_N = y - \bar{y}_N$. Induction hypotheses: for k = 1, 2, ..., N

$$v_k = \mathcal{O}(e^{-(\mu_k + \delta_k)t)}),$$

and equations for y_k 's hold true for k = 1, 2, ..., N. We will construct the polynomial $q_{N+1}(t)$ such that

$$|w_N(t) - q_{N+1}(t)| = \mathcal{O}(e^{-\delta_{N+1}t}),$$

where

$$w_N(t)=e^{\mu_{N+1}t}v_N(t).$$

Equation for $w_N(t)$:

$$w_N' = -(A - \mu_{N+1})w_N + \sum_{m \geq 2} \sum_{\mu_{j_{m,1}} + \mu_{j_{m,2}} + \dots + \mu_{j_{m,m}} = \mu_{N+1}} L_m(q_{j_{m,1}}, q_{j_{m,2}}, \dots, q_{j_{m,m}}) + \mathcal{O}(e^{-\delta t}).$$

For $\mu \in S$, taking R_{μ} of the equation gives

$$(R_{\mu}w_{N})' = -(\mu - \mu_{N+1})R_{\mu}w_{N}$$
 $+ \sum_{m \geq 2} \sum_{\mu_{j_{m,1}} + \mu_{j_{m,2}} + \dots + \mu_{j_{m,m}} = \mu_{N+1}} R_{\mu}L_{m}(q_{j_{m,1}}, q_{j_{m,2}}, \dots, q_{j_{m,m}})$
 $+ \mathcal{O}(e^{-\delta t}).$

Lemma

Let $(X, \|\cdot\|)$ be a Banach space. Suppose y(t) is in $C([0, \infty), X)$ and $C^1((0, \infty), X)$ that solves the following ODE

$$\frac{dy}{dt} + \alpha y = p(t) + g(t) \quad \text{for } t > 0,$$

where constant $\alpha \in \mathbb{R}$, p(t) is a X-valued polynomial in t, and $g(t) \in C([0,\infty),X)$ satisfies

$$||g(t)|| \le Me^{-\delta t} \quad \forall t \ge 0, \quad \text{for some } M, \delta > 0.$$

Define q(t) for $t \in \mathbb{R}$ by

$$q(t) = \begin{cases} e^{-\alpha t} \int_{-\infty}^{t} e^{\alpha \tau} p(\tau) d\tau & \text{if } \alpha > 0, \\ y(0) + \int_{0}^{\infty} g(\tau) d\tau + \int_{0}^{t} p(\tau) d\tau & \text{if } \alpha = 0, \\ -e^{-\alpha t} \int_{t}^{\infty} e^{\alpha \tau} p(\tau) d\tau & \text{if } \alpha < 0. \end{cases}$$

Then q(t) is an X-valued polynomial that satisfies

$$\frac{dq(t)}{dt} + \alpha q(t) = p(t) \quad \forall t \in \mathbb{R},$$

and the following estimates hold.

(i) If $\alpha > 0$ then

$$\|y(t)-q(t)\| \leq \Big(\|y(0)-q(0)\| + \frac{M}{|\alpha-\delta|}\Big)e^{-\min\{\delta,\alpha\}t}, t\geq 0, \text{ for } \alpha\neq\delta,$$

and

$$||y(t) - q(t)|| \le (||y(0) - q(0)|| + Mt)e^{-\delta t}, t \ge 0, \text{ for } \alpha = \delta.$$

(ii) If $(\alpha = 0)$ or $(\alpha < 0$ and $\lim_{t\to\infty} e^{\alpha t}y(t) = 0)$ then

$$||y(t)-q(t)|| \leq \frac{Me^{-\delta t}}{|\alpha-\delta|} \quad \forall t \geq 0.$$

Applying the above ODE lemma, then there exists polynomial $q_{N+1,j} \in R_{\mu_j}(\mathbb{R}^n)$ such that

$$|R_{\mu_j}w_N(t) - q_{N+1,j}(t)| = \mathcal{O}(e^{-\delta_{N+1}t}),$$

Define $q_{N+1} = \sum_{j} q_{N+1,j}$ (finite sum). Then

$$|w_N(t) - q_{N+1}(t)| = \mathcal{O}(e^{-\delta_{N+1}t}),$$

which yields

$$|y(t) - \sum_{k=1}^{N} q_k(t)e^{-\mu_k t} - q_{N+1}(t)e^{-\mu_{N+1} t}| = \mathcal{O}(e^{-(\mu_{N+1} + \delta_{N+1})t}).$$

II. Case of power decay

Recall

$$f(t) \stackrel{\text{pow.}}{\sim} \sum_{k=1}^{\infty} \eta_k t^{-\mu_k}.$$

Need to prove

$$y(t) \stackrel{\text{pow.}}{\sim} \sum_{k=1}^{\infty} \xi_k t^{-\mu_k}.$$

Induction step. Let $y_k = \xi_k t^{-\mu_k}$, $\bar{y}_N = \sum_{k=1}^N y_k$ and $v_N = y - \bar{y}_N$.

Suppose

$$|v_N| = \mathcal{O}(t^{-(\mu_N + \delta_N)}).$$

Let

$$w_N = t^{\mu_{N+1}} v_N$$
.

Induction step.

Equation for $w_N(t)$:

$$w'_{N} = -Aw_{N}$$

$$+ t^{\mu_{N+1}} \left\{ t^{-\mu_{N+1}} \sum_{m \geq 2} \sum_{\mu_{j_{m,1}} + \mu_{j_{m,2}} + \dots + \mu_{j_{m,m}} = \mu_{N+1}} L_{m}(\xi_{j_{m,1}}, \xi_{j_{m,2}}, \dots, \xi_{j_{m,m}}) \right\}$$

$$+ \eta_{N+1} t^{-\mu_{N+1}}$$

$$+ \sum_{k=1}^{N} \left(t^{-\mu_{k}} \sum_{m \geq 2} \sum_{\mu_{j_{m,1}} + \mu_{j_{m,2}} + \dots + \mu_{j_{m,m}} = \mu_{k}} L_{m}(\xi_{j_{m,1}}, \xi_{j_{m,2}}, \dots, \xi_{j_{m,m}}) \right\}$$

$$- A\xi_{k} t^{-\mu_{k}} + \eta_{k} t^{-\mu_{k}} + \sum_{n=1}^{N} \mu_{p} \xi_{p} t^{-(\mu_{p}+1)} + \mathcal{O}(t^{-\delta}).$$

Note $\mu_N + 1 \ge \mu_{N+1}$. Moreover

$$\{\mu_p + 1 : 1 \le p \le N - 1\} \cap [\mu_1, \mu_{N+1}) \subset \{\mu_k : 1 \le k \le N\}.$$

Then distribute the red sum into the others including possible $\mathcal{O}(t^{-\delta})$ gives

$$\begin{split} w_{N}' &= -Aw_{N} \\ &+ t^{\mu_{N+1}} \Big\{ t^{-\mu_{N+1}} \sum_{m \geq 2} \sum_{\mu_{j_{m,1}} + \mu_{j_{m,2}} + \dots + \mu_{j_{m,m}} = \mu_{N+1}} L_{m}(\xi_{j_{m,1}}, \xi_{j_{m,2}}, \dots, \xi_{j_{m,m}}) \Big) \\ &+ \eta_{N+1} t^{-\mu_{N+1}} + \mu_{p} \xi_{p} t^{-(\mu_{p}+1)} \Big|_{\mu_{p}+1 = \mu_{N+1}} \\ &+ \sum_{k=1}^{N} \Big(-A\xi_{k} t^{-\mu_{k}} + t^{-\mu_{k}} \sum_{m \geq 2} \sum_{\mu_{j_{m,1}} + \mu_{j_{m,2}} + \dots + \mu_{j_{m,m}} = \mu_{k}} L_{m}(\xi_{j_{m,1}}, \xi_{j_{m,2}}, \dots, \xi_{j_{m,m}}) \\ &+ \eta_{k} t^{-\mu_{k}} + \mu_{p} \xi_{p} t^{-(\mu_{p}+1)} \Big|_{\mu_{p}+1 = \mu_{k}} \Big) \Big\} \\ &+ \mathcal{O}(t^{-\delta}). \end{split}$$

Thus,

$$w_N' = -Aw_N + A\xi_{N+1} + \mathcal{O}(t^{-\delta}).$$

Lemma

If for some $\alpha > 0$,

$$y' = -Ay + \xi + \mathcal{O}(t^{-\alpha}),$$

then

$$y(t) = A^{-1}\xi + \mathcal{O}(t^{-\alpha}).$$

Proof.

$$y(t) = e^{-tA}y_0 + e^{-tA} \int_0^t e^{\tau A} \xi d\tau + \int_0^t e^{-(t-\tau)A} \mathcal{O}(\tau^{-\alpha}) d\tau$$

= $e^{-tA}y_0 + e^{-tA} A^{-1} (e^{tA} \xi - \xi) + \mathcal{O}(t^{-\alpha})$
= $A^{-1} \xi + \mathcal{O}(t^{-\alpha})$. \square

Then $w_N(t) = A^{-1}(A\xi_{N+1}) + \mathcal{O}(t^{-\delta}) = \xi_{N+1} + \mathcal{O}(t^{-\delta}).$ Thus,

$$v_N(t) = \xi_{N+1} t^{-\mu_{N+1}} + \mathcal{O}(t^{-(\mu_{N+1}+\delta)}).$$

4. Application to solutions near special periodic orbits

Application (demonstration)

On the plane n=2, $y=(y_1,y_2)$, $r=|y|=\sqrt{y_1^2+y_2^2}$. In polar coordinates, i.e., $y(t)=r(t)(\cos(\theta(t),\sin(\theta(t)))$, assume

$$\begin{cases} r' = (r-1)(r-2), \\ \theta' = 1. \end{cases}$$

Then r = 1, 2 and $\theta = \theta_0 + t$ are periodic solutions.

The first (r = 1) is asymptotically stable, and the second (r = 2) is unstable.

Denote the first periodic orbit by $y^*(t) = (\cos(\theta_0 + t), \sin(\theta_0 + t))$.

Expansion

Let z = r - 1, then

$$z' = z(z-1) = -z + z^2, \quad z(0) = z_0 \in (-1,1).$$

Then z(t) admits an expansion:

$$z(t) = \sum_{k=1}^{\infty} q_k(t) e^{-kt},$$

where real-valued polynomials q_k 's solve

$$rac{dq_k}{dt} = (k-1)q_k + \sum_{j+\ell=k} q_j q_\ell.$$

Hence the solution y(t) has expansion

$$y(t) \stackrel{\text{exp.}}{\sim} y^*(t) \Big(1 + \sum_{k=1}^{\infty} q_k(t)e^{-kt}\Big).$$

Calculations

- $q_1(t) = \xi_1$,
- $q_2'(t) = q_2(t) + \xi_1^2$. Hence, $q_2(t) = -e^t \int_{-\infty}^t e^{-\tau} \xi_1^2 d\tau = -\xi_1^2$.
- Claim: $q_k(t) = (-1)^{k+1} \xi_1^k$. Indeed, prove by induction,

$$q'_k = (k-1)q_k + s_k \xi_1^k, \quad s_k = (-1)^k (k-1).$$

Then, $q_k(t) = -e^{(k-1)t} \int_{-\infty}^t e^{-(k-1)\tau} s_k \xi_1^k d\tau = \frac{s_k}{k-1} \xi_1^k$, where

$$c_1 = 1, \ c_k = \frac{s_k}{k-1} = (-1)^k.$$

Thus, $y(t) \stackrel{\exp.}{\sim} y^*(t) \Big(1 + \sum_{k=1}^{\infty} (-1)^{k+1} \xi_1^k e^{-kt} \Big).$

• Explicitly, $z(t) = \frac{\xi_1 e^{-t}}{1+\xi_1 e^{-t}} = \sum_{k=1}^{\infty} (-1)^{k+1} \xi_1^k e^{-kt}$, with $\xi_1 = z_0/(1-z_0)$.

Non-autonomous case I: Exponential perturbation

$$r' = (r-1)(r-2) + \sum_{k=1}^{\infty} p_k(t)e^{-kt}, \quad \theta' = 1.$$

Then

$$z' = -z + z^2 + \sum_{k=1}^{\infty} p_k(t)e^{-kt}.$$

Similarly,

$$y(t) \stackrel{\text{exp.}}{\sim} y^*(t) \Big(1 + \sum_{k=1}^{\infty} q_k(t)e^{-kt}\Big),$$

where

$$rac{dq_k}{dt} = (k-1)q_k + \sum_{j+\ell=k} q_j q_\ell + rac{p_k}{p_k}.$$

Non-autonomous case II: Power perturbation

Assume there are $d_k \in \mathbb{R}$:

$$r' = (r-1)(r-2) + \sum_{k=1}^{\infty} d_k t^{-k}, \quad \theta' = 1.$$

Then

$$z' = -z + z^2 + \sum_{k=1}^{\infty} d_k t^{-k}.$$

We obtain

$$y(t) \stackrel{\text{pow.}}{\sim} y^*(t) \Big(1 + \sum_{k=1}^{\infty} a_k t^{-k}\Big),$$

where

$$a_1 = d_1, \ a_k = (k-1)a_{k-1} + \sum_{j+\ell=k} a_j a_\ell + d_k \ \text{for} \ k \ge 2.$$

5. More general expansions

Theorem,

If
$$f(t) \sim \sum_{n=1}^{\infty} p_n(\ln t) t^{-\mu_n}$$
, then

$$u(t) \sim \sum_{n=1}^{\infty} q_n(\ln t) t^{-\mu_n},$$

with

$$Aq_1=p_1,$$

$$Aq_{k} = \sum_{\mu_{j_{m,1}} + \mu_{j_{m,2}} + \dots + \mu_{j_{m,m}} = \mu_{k}} \mathcal{G}_{m}(q_{j_{m,1}}, q_{j_{m,2}}, \dots, q_{j_{m,m}}) + p_{k} + \chi_{k}, \quad k \geq 2.$$

where, for $k \geq 2$,

$$\chi_k = \begin{cases} \mu_{\lambda} q_{\lambda} - q'_{\lambda}, & \text{if there exists } \lambda \in [1, k - 1] : \mu_{\lambda} + 1 = \mu_k, \\ 0, & \text{otherwise.} \end{cases}$$

In particular, if

$$f(t) \sim \sum_{n=1}^{\infty} \eta_n t^{-\mu_n},$$

then

$$u(t) \sim \sum_{n=1}^{\infty} \xi_n t^{-\mu_n}.$$

In case $\mu_k = k$ then

$$\chi_k(t) = (k-1)q_{k-1} - q'_{k-1}.$$

Let
$$L_k(t) = \underbrace{\ln(\ln(\cdots \ln(t)))}_{k\text{-times}}$$
.

Theorem

Let k > m > 1. If

$$f(t) \sim \sum_{k=1}^{\infty} \rho_n(L_k(t)) L_m(t)^{-\mu_k},$$

then

$$u(t) \sim \sum_{k=1}^{\infty} q_n(L_k(t)) L_m(t)^{-\mu_k},$$

where

$$Aq_{1} = p_{1},$$

$$Aq_{k} = \sum_{\mu_{j_{m,1}} + \mu_{j_{m,2}} + \dots + \mu_{j_{m,m}} = \mu_{k}} \mathcal{G}_{m}(q_{j_{m,1}}, q_{j_{m,2}}, \dots, q_{j_{m,m}}) + p_{k}, \quad k \geq 2.$$

Denote $\mathcal{L}_{m,k} = (L_{m+1}(t), L_{m+2}(t), \dots, L_{m+k}(t)).$

Theorem

Let $m \ge 1$. Suppose

$$f(t) \sim \sum_{k=1}^{\infty} \rho_n(\mathcal{L}_{m,N_k}(t)) L_m(t)^{-\mu_k},$$

where $N_k \geq 1$ is increasing, and $p_k : \mathbb{R}^{N_k} \to \mathbb{R}^n$ is a multi-variable vector-valued polynomial.

Then

$$u(t) \sim \sum_{k=1}^{\infty} q_n(\mathcal{L}_{m,N_k}(t)) L_m(t)^{-\mu_k},$$

where

$$Aq_1 = p_1,$$

$$Aq_k = \sum_{\mu_{j_{m,1}} + \mu_{j_{m,2}} + \dots + \mu_{j_{m,m}} = \mu_k} \mathcal{G}_m(q_{j_{m,1}}, q_{j_{m,2}}, \dots, q_{j_{m,m}}) + p_k, \quad k \ge 2.$$

More results will come, but for now ...

THANK YOU FOR YOUR ATTENTION!